

INTERNATIONAL SYMPOSIUM ON FUSION NUCLEAR TECHNOLOGY

10-15 SEPT 2023 AUDITORIO ALFREDO KRAUS LAS PALMAS DE

SPAIN

GRAN CANARIA,

Structural Integrity Assessment of the Central Outboard Segment of the EU DEMO HCPB Breeding Blanket

Anoop Retheesh, Guangming Zhou, Francisco A. Hernández

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. Outline

- 1. Introduction to the Design
- 2. Finite Element Modelling
- 3. Attachment System
- 4. Results
- **5.** Conclusions

1. Design: Introduction

HCPB BB Concept within the DEMO tokamak

- **Coolant**: 80 bar helium gas, T_{in}/T_{out}: 300/520 °C
- Structural material: Eurofer97
- Tritium breeder: Advanced ceramic breeder (Li4SiO4+35%mol.Li2TiO3)
- Neutron multiplier: Be12Ti block
- Armour: Tungsten, Functionally Graded Material, 2 mm
- Tritium extraction: helium purge gas at 80 bar

1. Design: Central Outboard Segment

Central Outboard (COB) Segment on Single Module Segment (SMS) Concept

2. Finite Element Modelling: Global and Sub-model

- Shell elements
- Coarse mesh (≈2Million Nodes and Elements)
- Only structural members
- First wall represented by orthotropic layered shell

2. Finite Element Modelling: Modelling of first wall

First Wall model

- Trade-off studies between solid, orthotropic shell and layered shell
- Selected 3 layered shell element
- Middle orthotropic layer
- Ansys Material Designer to estimate equivalent material properties
- A Representative Volume Element (RVE) is used for the numerical tests

RVE – orthotropic layer

Verification studie					
	Mesh 1	Mesh 2	Mesh 3	Analytical Solution	
Elements	34	200	750		
Nodes	54	255	882	-	
Aspect Ratio	3.6	2.4	1.5		
Max. Displacement (mm)	5.84	5.85	5.85	5.69	■ 88
Error – Displacement	2.6%	2.8%	2.8%	-	
Max. Stress (MPa)	173	173	173	169	-
Error – Stress	2.3%	2.5%	2.5%	-	

Verification studies: I-beam natural frequencies										
	Analytical Solution (Hz)	Shell FEM Frequency (Hz)	Error							
Mode 1	600	588	2%							
Mode 2	1650	1600	3%							
Mode 3	3243	3084	5%							
Mode 4	5042	4998	1%							
		-								

2. Finite Element Modelling: Benchmarking studies

A. Retheesh, G. Zhou, F.A. Hernández | ISFNT15 | 11.09.2023 | Page 7

2. Finite Element Modelling: Thermal loads mapping

Sub-model Thermo-hydraulics analysis

- Steady state corresponding to normal operation
- Assumed poloidal symmetry
- 1D fluid lines for modelling Helium coolant
- 35g/s at first wall and 21.7g/s at breeder zone
- HTC approximated using Gnielinski correlation
- Fusion flux as surface heat flux
- Neutron wall loads as volumetric heat generation

Temperature Distribution on the Global Model

3. Attachment System

Design Requirements

- Support the segments under gravity & seismic loads
- Minimize thermal stresses
- Support EM Loads during operation
- Avoid contact to vacuum vessel
- Remote handling friendly

Refer: ESTEYCO, HCPB and Blanket Attachment System Global Structural Analyses, 2022, EFDA_D_2QQNVG

Design Option 1

- Supports the assembly well against primary loading
- High thermal stresses due to constrained poloidal expansion

Design Option 2

• Free poloidal expansion resulting in unbending of the structure causing high stresses

Primary (P) Loading

Primary + Secondary (P+Q) Loading

Primary (P) Load

Primary + Secondary

Sub-model results using global model displacements

A. Retheesh, G. Zhou, F.A. Hernández | ISFNT15 | 11.09.2023 | Page 13

	Immediate Plastic Collapse (IPC), Instability (IPI) and Plastic Flow Localization (IPFL) & Progressive Deformation (PD)														
F	Path	T _{avg} (°C)	$\overline{P_m}$ Value (MPa)	S ^A m Limit (MPa)	IPC Margin	$\overline{P_l + P_b}$ Value (MPa)	$1.5 imes S_m^A$ Limit (MPa)	IPI Margin	$\overline{P_m + Q_m}$ Value (MPa)	S ^A em Limit (MPa)	IPFL Margin	$\overline{P_l + P_b} + \overline{\Delta Q}$ Value (MPa)	$3 \times S_m^A$ Limit (MPa)	r	PD Margin
	L1	411	81	169	√ 52%	157	253	√ 38%	265	310	v 15%	465	507	Į	8%
	L2	419	167	167	0%	178	250	√ 29%	285	313	9%	319	500	~	36%
	L3	385	134	175	√ 23%	210	263	√ 20%	256	301	v 15%	314	525	~	40%
	L4	366	114	179	√ 37%	169	269	√ 37%	119	295	√ 60%	180	538	~	67%
	L5	353	133	182	√ 27%	135	273	√ 51%	359	290	X -24%	363	546	~	34%
	L6	349	152	183	√ 17%	153	274	√ 44%	395	287	X -37%	399	548	~	27%
	L7	443	30	160	√ 81%	44	240	√ 82%	299	321	. 7%	424	480	~	12%
	L8	332	165	186	√ 11%	165	279	√ 41%	389	288	× -35%	393	557	~	30%

Stress assessment results for first wall slice under plane strain conditions

Initial stress assessment for first wall using Sub-model results

	Immediate Plastic Collapse (IPC), Instability (IPI) and Plastic Flow Localization (IPFL) & Progressive Deformation (PD)												
Path	T _{avg} (°C)	Pm Value (MPa)	S ^A m Limit (MPa)	IPC Margin	$\overline{P_l + P_b}$ Value (MPa)	1.5 × S_m^A Limit (MPa)	IPI Margin	$\overline{P_m + Q_m}$ Value (MPa)	S ^A em Limit (MPa)	IPFL Margin	$\overline{P_l + P_b} + \overline{\Delta Q}$ Value (MPa)	$3 \times S_m^A$ Limit (MPa)	PD Margin
L1	411	113	169	√ 33%	189	253	√ 25%	432	310	× -39%	576	507	X -14%
L2	419	199	167	X -19%	214	250	√ 14%	550	313	X -76%	593	500	X -18%
L3	385	172	175	2%	235	263	√ 11%	472	301	X -57%	491	525	6%
L4	366	150	179	√ 16%	216	269	√ 20%	281	295	5%	362	538	√ 33%
L5	353	146	182	√ 20%	146	273	√ 46%	442	290	X -52%	447	546	√ 18%
L6	349	146	183	√ 20%	148	274	√ 46%	442	287	X -54%	446	548	√ 19%
L7	443	49	160	√ 69%	54	240	√ 77%	514	321	× -60%	621	480	X -29%
L8	332	173	186	7%	173	279	✓ 38%	469	288	× -63%	474	557	√ 15%

Summary:

- Method for reduced FE representation of the whole HCPB BB segment
- Explored different attachment systems and its effects on blanket design
- High secondary thermal stress could be a challenge for SMS concepts

Further work plans:

- Improve the global model remove toroidal symmetry, better thermal loads mapping
- Extend studies to include electromagnetic and seismic loads normal and off-normal operations
- Explore design options to relief thermal stresses
- Inelastic analysis for assessment of plastic strain limits under secondary thermal load*

Refer: Retheesh, A., Hernández, F. A. & Zhou, G. Application of Inelastic Method and Its Comparison with Elastic Method for the Assessment of In-Box LOCA Event on EU DEMO HCPB Breeding Blanket Cap Region. Applied Sciences 11, 9104 (2021)