

Fusion Neutron Diagnostics with CVD Diamond Detectors

International Symposium on Fusion Nuclear Technology (ISFNT15) September 11-15, 2023

> Christina Weiss, Erich Griesmayer CIVIDEC Instrumentation GmbH & TU Wien

Content

- Fusion neutrons
- CVD diamond technology
- Diagnostics with CVD diamond detectors
- CVD diamond performance
- Applications

FUSION NEUTRONS

Fusion neutrons

DD-Fusion

DT-Fusion

Fusion neutrons

11.09.2023, ISFNT15

CVD DIAMOND TECHNOLOGY

DE BEERS GROUP

CVD diamond

Chemical vapor deposition

CVD diamond

CVD diamond

CVD diamond

Solid-state sensor \mathcal{E}_{gap} = 5.47 eV E_{ion} = 13 eV

CVD diamond sensor

Equivalent circuit diagram

Neutron diagnostic system

FUSION NEUTRON DIAGNOSTICS WITH CVD DIAMOND DETECTORS

Charged particles from nuclear interactions make neutrons detectable.

Charged particle as reaction product.

Q-value Calculator (QCalc)

Reaction Q-values for ¹²C + n(E_{lab}=20 MeV)

	Reaction Products	Q-value (keV)	Threshold (keV)
	¹³ C+y	4946.31 0.0	0.0 0.0
\triangleleft	¹² C+n	0.0 0.0	0.0 0.0
	⁹ Be+α	-5702.05 0.08	6181.469 0.0867
	4 He+n+2 α	-7274.7466 6.59E-4	7886.396 7.14E-4
	⁸ Be+n+α	-7366.5864 0.035	7985.9575 <i>0.0379</i>
	5 He+2 α	-8009.7 20.0	8683.2 21.7
	¹² B+p	-12587.05 1.32	13645.35 1.43
	¹¹ B+d	-13732.113 0.01	14886.688 0.0108
	¹¹ B+n+p	-15956.678 0.012	17298.291 0.013

Simulation

DD-Fusion Measurement

DD-Fusion Measurement

DT-Fusion Measurement

Neutron energy distribution

Deposited Energy [MeV]

CVD DIAMOND PERFORMANCE

High-temperature compatible

C. Weiss et al., NIMA 1040 (2022) 167182: High-temperature performance of solid-state sensors up to 500°C.

Radiation hardness

Figure 5.17: Performances of the 50 μm diamond estimated from 100 μm data.

M. Passeri, PhD Università di Roma Tor Vergata (2020): Experimental investigations of single Crystal Diamond detectors for the ITER Radial Neutron Camera.

APPLICATIONS

Large Helical Device

K. Ogawa et al., 2023 JINST 18 P01022: Fusion product diagnostics based on commercially available chemical vapor deposition diamond detector in LHD.

ITER Radial-Neutron Camera

B. Morgenbesser, Master Thesis TU Wien (2021): A Novel Radial Neutron Camera CVD Diamond Detector Prototype for ITER.

https://fusionforenergy.europa.eu/news/a-camera-to-see-iter-neutrons/

© CIVIDEC Instrumentation

Conclusions

- Fusion neutron diagnostics with CVD diamond detectors:
 - Information on fusion plasma
- Radiation hardness: 10¹⁵ fusion neutrons on device.
- High-temperature compatibility: $T \le 500^{\circ}C$.

Conclusions

- Fusion neutron diagnostics with CVD diamond detectors:
 - Information on fusion plasma
- Radiation hardness: 10¹⁵ fusion neutrons on device.
- High-temperature compatibility: $T \le 500^{\circ}C$.
- Applications:
 - Large Helical Device
 - ITER: RNC & VNC
 - Fusion neutron generators
 - Industrial devices

Thank you for your attention!

www.cividec.at

