

10-15 SEPT 2023

LAS PALMAS DE GRAN CANARIA,

Measurement of tritium production in the HCPB TBM mock-up at JET during DTE2

<u>N. Fonnesu</u>, M. Angelone, S. Loreti, M. Pillon, R. Villari, P. Batistoni, A. Colangeli, D. Flammini, F. Moro, S. Noce, A. Previti and JET Contributors*.

*See the author list of "Overview of T and D-T results in JET with ITER-like wall" by CF Maggi et al. to be published in Nuclear Fusion Special Issue: Overview and Summary Papers from the 29th Fusion Energy Conference (London, UK, 16-21 October 2023)

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Outline

Introduction

- DTE2 campaign at JET
- TBM mock-up

TBM Diamond Detector

- Neutron detection
- Calibration
- Experimental Setup

Measurements and Simulations

- DTE2
- MCNP predictions and C/E during DTE2
- Hardware upgrade
- Preliminary results from DTE3

Concluding remarks

DT campaigns at JET

 \rightarrow R. Villari

PL1

	JET campaign	start date	end date	Total N yield	Max N yield per pulse
	C36a (DD)	04/01/2016	27/06/2016	7.6E+18	5.0E+16
	C36b (DD)	10/10/2016	15/11/2016	1.1E+19	1.3E+17
	C38a (DD)	03/06/2019	20/12/2020	3. 7E+19	1.5E+17
	C38b (DD)	17/02/2020	23/03/2020	1.5E+19	2.1E+17
	C38c (DD)	06/07/2020	26/09/2020	1.7E+19	1.9E+17
	C39T (TT)	07/12/2020	18/12/2020	6. 1E+15	1.6E+15
	C40 (TT)	04/01/2021	31/07/ 2021	8.5E+18	1.5E+17
	DTE2	08/08/2021	21/12/ 2021	8.5E+20	2.1E+19
	DTE3	30/08/2023	ongoing	9.7E19	8.4E18

Successful JET DT campaign in 2021 (DTE2)

- Record sustained fusion power of 10.3 MW averaged over 5 seconds
- 8.5 x 10²⁰ DT neutrons
- Max daily yield rate 1.04 10²⁰ DT on 21 December

Several activities under WP PrIO SP5 (Neutronics, Nuclear waste and Safety)

DTE3 ongoing, ~ 9.7E19 DT neutrons up to now (08/09/2023)

TBM mock-up

- Tritium breeding blanket is a key component in a fusion reactor (DEMO);
- **Test Blanket Modules** (TBMs) in **ITER** will provide the first experimental data to validate the predictions on tritium production and recovery;
- Mock-up of HCPB TBM (Helium Cooled Pebble Bed) featuring all the relevant nuclear details to reproduce as close as possible the neutron energy spectra occurring in the TBM in ITER.

TBM mock-up

- Tritium breeding blanket is a key component in a fusion reactor (DEMO);
- Test Blanket Modules (TBMs) in ITER will provide the first experimental data to validate the predictions on tritium production and recovery;
- Mock-up of HCPB TBM (Helium Cooled Pebble Bed) featuring all the relevant nuclear details to reproduce as close as possible the neutron energy spectra occurring in the TBM in ITER.

TBM mock-up installed at JET to take advantage of the high neutron emission during DTE2 campaign.

TBM mock-up at JET

(a) Octant 8

(b) TBM mock-up box

(c) The cable which connects the detector

(d) The preamplifier and the junction box

TBM Mock-up Diamond Detector (TBMD)

- 50 μm thick, surface of 4.3x4.3 mm²
- 3 µm LiF converting layer (95 % enriched ⁶Li) on top of the upper electrode
- 14-MeV neutrons detected through ¹²C(n,α)⁹Be, E_n > 6.1 MeV
- Thermal neutrons detected through ⁶Li(n,α)T (T@2.73 MeV, α @2.07MeV)
- Calibrated to assess TBM performance (T production inside TBM mock-up)

TBMD Calibration at ENEA-INMRI

(c)

ENEA-INMRI thermal neutron flux density standard: picture (a), horizontal (b) and vertical (c) cross sections.

Table 4.2 Characteristic	limits of the measurement
--------------------------	---------------------------

Quantity	Symbol	Value
Primary measurement result (i.e., ROI net counts)	У	17670
Standard Uncertainty associated with y	u(y)	188
Decision threshold	<i>y</i> *	219
Detection limit	<i>y</i> [#]	440
Lower limit of the confidence level (95%)	y <	17302
Upper limit of the confidence level (95%)	y >	18038
Best estimate of the measurand	ŷ	17670
Standard uncertainty associated with $\widehat{m{y}}$	$u(\hat{y})$	188

$$R_{Li6} = \langle \sigma \varphi \rangle = \frac{cps \, M_{Li6}}{N_{Av} \, m_{Li6} \, \varepsilon \, k} = K_{cal} \, cps$$

Kcal=(2.504±0.039)x10⁻¹⁸, i.e., 1 count per second (cps) corresponds to Kcal reactions ${}^{6}\text{Li}(n,T)\alpha$ per atom of Li⁶ in the converting layer

Experimental Setup

Measurements at JET during DTE2

Pulse 99447

MCNP model

Diamond

crystal

LiF

DULED

MCNP Calculation of TBMD response

Calculation/Measurement (C/E)

		MCNP calculation		TBMD measurements		
Pulse number	Neutron yield	T/neutron source in Li6	in Li7	T/neutron source in Li6	C/E for Li6	Note
99447	7.23E+14	1.08E-12	4.81E-17	1.40E-12	0.77 (±0.03)	
99451	5.03E+14	1.08E-12	4.81E-17	1.40E-12	0.77 (±0.03)	
99453	2.31E+14	1.08E-12	4.81E-17	1.36E-12	0.79 (±0.05)	below detection limit

Upgrade of measuring chain with a faster preamp.

.

Alpha source(²³⁹Pu-²⁴¹Am-²⁴⁴Cm).

Bin Center

PreAmp Type	Digitizer Type	Pulse Analysis Type	Pulse Width (ns)	Max Count rate (x10 ³)
Cividec Charge Preamp	DT5751	Pulse integration	500	400
Cividec Current Preamp	DT5751	Pulse integration	30	6500
Cividec Charge Preamp	DT5724	Pulse height (long trapezoid)	800	250
Cividec Charge Preamp	DT5724	Pulse height (short trapezoid)	500	400

Measurements during DTE3

Measurements during DTE3

Measurements during DTE3

- n flux ~3x10¹⁰ n/cm²s
- Dead time < 20%
- T production measured up to 3x10¹⁷ n/s (so far)
- Max data transfer rate reached?
- C/E to be assessed

Extrapolation to ITER TBM

In ITER TBM neutron flux ~ 500-1000 times higher

- Reduction of detection efficiency to work at higher n flux
 - thickness of LiF layer
 - isotopic abundance of ⁶Li
- Improve data transfer rate of measuring chain (optical link)

High temperature environment

- More robust configuration
- Mineral-insulated cable

Concluding remarks

- Diamond detector installed at JET inside TBM mock-up for online measurement of tritium production
- Aim is testing detector for ITER TBMs under fusion relevant operating conditions
- C/E=0.77 determined during DTE2 campaign at JET
- Max neutron emission rate of TBMD operation during DTE2 ~1x10¹⁵ n/s
- System upgraded, during DTE3 (up to now) ~3x10¹⁷ n/s JET pulses are properly measured
- C/E during DTE3 to be assessed

10-15 SEPT 2023 AUDITORIO ALFREDO KRAUS LAS PALMAS DE GRAN CANARIA.

Thank you for your attention !

nicola.fonnesu@enea.it

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.