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Introduction – Additive manufacturing processes

Laser - PBF-LB/M

 Additive manufacturing (AM):

⇛ three-dimensional objects are created by sequential layerwise deposition of material under computer control

⇛ objects with more or less arbitrary shape can be produced

[K. Kempen et al., Solid Freeform Fabrication Symposium, 2011]
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Introduction – Additive manufacturing processes

Laser - PBF-LB/M Electron beam - PBF-EB/M

[C. Ledford et al., Int. J. Refract. 

Met. Hard Mater., 2023]

[D. Dorow-Gerspach, et al., Nuclear Materials 

and Energy, 2021]

 Additive manufacturing (AM):

⇛ three-dimensional objects are created by sequential layerwise deposition of material under computer control

⇛ objects with more or less arbitrary shape can be produced



[F. Pixner et al., International Journal of Refractory Metals and Hard Materials, 2022]
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Introduction – Additive manufacturing processes

Laser - PBF-LB/M Electron beam - WEBAM

 Additive manufacturing (AM):

⇛ three-dimensional objects are created by sequential layerwise deposition of material under computer control

⇛ objects with more or less arbitrary shape can be produced
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Introduction – Plasma-facing components

Divertor target

Water: T ~ 150°C

~ 8𝑚𝑚

𝑞 ~ 10 − 20
𝑀𝑊

𝑚2

Heat sink: Copper (Cu) alloy or W-Cu composite materials

⇛ High thermal conductivity

PFM: Tungsten (W)

⇛ Low physical sputtering yield

⇛ Low retention of hydrogen isotopes

⇛ Low vapour pressure

⇛ High melting point

...

[T.R. Barrett et al., Fus. Eng. and Design, 2016]
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PBF-LB/M of tungsten – Cracking

100 µm

P = 400 W, v = 510 mm/s,

T = 1000°C
50 µm

P = 400 W

v = 300 mm/s

𝜌rel = 98.3%

200 µm

W substrate plate

 PBF-LB/M of W with Substrate preheating up to 1000°C

o Material can be consolidated with high density, but 

still shows microcrack defects

[A. v. Müller et al., Proceedings of the 6th International 

Conference on Additive Technologies (iCAT), 2016] [A. v. Müller et al., Nuclear Materials and Energy, 2019]
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PBF-LB/M of tungsten – Laser beam shaping

 Laser beam shaping can be used to

infuence the melt pool characteristics

o e.g. welding depth, cooling rates

 Enlargement of process window

 Less processing defects

 Investigation of processing by using different 

ring-shaped laser beam profiles (nLight AFX 

1000 laser source)
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PBF-LB/M of tungsten – Laser beam shaping

Gauss Shape

(0/100)*

Preheat Donut

(30/70)*

Donut-Shape

(90/10)* 

Power ratio (donut/single mode)*

 Comparative work with simulations of the laser beam melting behaviour in the context

of EUROfusion WPMAT ongoing

Cracking along melting track

 First experiments with different ring-core distributions conducted

o Melting tracks on W substrate with 800 W and 600 mm/s
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PBF-LB/M multi-material fabrication

 Multi-material AM enables high design freedom

o Combination of different materials (properties) in one process

o Objective: 3-D arbitrary material distribution

 Significant progress during recent years regarding multi-material 

PBF-LB/M processing
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PBF-LB/M multi-material fabrication – W/CuCrZr

0° transition

90° transition

 Investigation about basic processability of W and CuCrZr in one process

 2-D multi-material AM

o Manufactured on an SLM 250 

with manual material change

o Build-up of W/CuCrZr with 

reduced cross-contamination

 3-D multi-material AM

o Manufactured on an SLM 250 with 

automatic material suction device

o Investigation of the cross-

contamination and material quality 

for 0° and 90° transition
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PBF-LB/M multi-material fabrication – W/CuCrZr

3-D multi-material AM

with recoater-mounted suction unit to remove 

unsolidified powder

2-D multi-material AM

with manual powder application

through glovebox

W/CuCrZr joint

fabricated via 2-D 

multi-material AM 
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W-Cu composite structures based on AM preforms

W structures (unit cell size 2.5 mm) fabricated by means

of PBF-LB/M: honeycomb structures and lattices

W-Cu tensile specimen based on W lattice

(unit cell size 2.5 mm, W volume fraction 0.3)

 Influence of microstructure and volume fraction on thermomechanical properties

2 mm

W

Cu

Additively manufactured

and Cu melt infiltrated

W structures
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W-Cu composite structures based on AM preforms

2 mm

W

Cu

 Influence of microstructure and volume fraction on thermomechanical properties

Additively manufactured

and Cu melt infiltrated

W structures
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Divertor application – W-Cu composite structures based on AM

[A. v. Müller, D. Dorow-Gerspach et al., 

Journal of Nuclear Materials, 2022]

Additively manufactured and

Cu infiltrated W structure

Cooling

channel

W armour tiles

Additively manufactured

graded W honeycomb

structure

 Graded honeycomb structure with attached W tiles as 

preform for small scale PFC mock-up

o Functionally graded properties of composite structure

o Intimate bonding between W armour and heat sink
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Divertor application – W-Cu composite structures based on AM

• High heat flux testing with the GLADIS facility at IPP Garching

o Screening up to 25 MW/m² (maximum surface temperature ≈ 1800°C)

o Cyclic loading: 90 pulses @ 10 MW/m²  small leak detected  repair/-testing ongoing

HHF test facility GLADIS @ IPP Garching
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Optimised W-Cu composite structures

576.1 MPa

82.2 MPa

-85.7%

[B. Curzadd et al., Nucl. Fusion, 2019]
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Translation to CAD designs

 Optimisation of W-Cu material distribution for PFC performance enhancement

Material distribution Stress field
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Optimised W-Cu composite structures

Cross section of tailored

W lattice preform

fabricated by means of

PBF-LB/M

W lattice preforms

fabricated by means

of PBF-LB/M

CAD model of a lattice

structure based on an 

optimised W-Cu material 

distribution

Material distribution Stress field

W

Cu

QN = 10 MW/m2

T0 = 650 °C

[B. Curzadd et al., Nuclear Fusion, 2019]

22 mm

I S F N T 2 0 2 3 1 7



I S F N T 2 0 2 3M A X - P L A N C K - I N S T I TU T F Ü R  P L A S M A P H Y S I K  |  A L E X A N D E R V.  M Ü L L E R |  1 2 . 0 9 . 2 0 2 3 1 8

W-Cu interface structures for joint enhancement

[T. Huber et al., Plansee Seminar, 2009]

Tailored interface

structure

„Heuristic“ approach

 Narrow joining zone between armour and heat sink decisive for PFC integrity and performance

o W-Cu interface structuring based on AM for enhanced bonding of W armour and heat sink

Example: AMC for CFC/CuCrZr joints

W armour

Cu based heat sink
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W-Cu interface structures for joint enhancement

W cones fabricated by means of PBF-LB/M

Cross section of

W cones with

Cu casting

„Heuristic“ approach

W

Cu

Tailored interface

structure

W armour

Cu based heat sink
1 mm

 Narrow joining zone between armour and heat sink decisive for PFC integrity and performance 

o W-Cu interface structuring based on AM for enhanced bonding of W armour and heat sink
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W-Cu interface structures for joint enhancement

20 MW/m2

W

CuCrZr

150 °C

 Interlocking metasurfaces (ILMs): Robust, non-permanent joining 

technology suitable for complex surfaces, dissimilar materials, and 

extreme environments (U.S. Patent 17/888,846)

 Investigations on how ILMs can serve as robust joining technology 

for W-Cu interfaces in PFCs

 Strategic design of interlocking 

structures for tailorable 

mechanical robustness

o Human intuitive design

o Parametric optimization

o Genetic algorithms

[N. K. Brown et al., Materials & Design, 2023]

[O. Bolmin et al., J. Mater. Sci., 2023]
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Conclusion

 The development of additive manufacturing technologies is progressing, also in 

view of tungsten

o Laser beam shaping

o Multi-material fabrication

o Wire based processes …

Many thanks for your attention!

 Exploitation of design freedom given by additive manufacturing for plasma-facing component

performance/resilience enhancement

o Fabrication and high heat flux testing of a small-scale plasma-facing component

mock-up based on an additively manufactured tungsten preform

o Tailored tungsten-copper composite structures based on additive manufacturing

 material distributions and macroscopic thermomechanical properties

 interface structures


