## 15<sup>th</sup> International Symposium on Nuclear Technology





Improvements of the Tungsten Guard Limiter of 4.6GHz Lower Hybrid Wave Antenna of the EAST and its Service Status under Operations

by

L. Yin<sup>1\*</sup>

D.M. Yao<sup>1</sup>, R. Ding<sup>1</sup>, C.L. Liu<sup>2</sup>, M. Wang<sup>1</sup>, P.F. Zi<sup>1</sup>, M.H. Li<sup>1</sup>, L. Cao<sup>1</sup>, L. Li<sup>1</sup>, L. Han<sup>1</sup>, T.J. Xu<sup>1</sup>, Z.L.Wang<sup>1</sup>

<sup>1</sup>Institute of Plasma Physics, Chinese Academy of Sciences

\*E-mail: lei.yin@ipp.ac.cn

## Outline





## **Brief Introduction of the EAST**





#### • Feature:

- 1. non-cricular cross-section
- 2. fully superconducting magnets
- 3. fully actively water cooled plasma facing componets
- Mission:

conducting ITER-like steady-state advanced plasma research

## **Overview of the EAST LHCD and GL**





2. GL should be 3mm higher than the LHWA grill in the poloidal cross section, R757mm .



[2] C.L. Liu er al. Fusion Eng. Des. 2017

[3] L.L. Zhang er al. Fusion Eng. Des. 2018

## **Review of the Obsolete Designs**



## **Obsolete GL consisting of Graphite tiles**





A layer of fast electrons exsit adjacent to the grill

Heat load of fast electrons goes approximately toroidally

Design target ~ 2.0 MW/m<sup>2</sup>.

C.L. Liu er al. Fusion Eng. Des. 2017

## **Obsolete GL consisting of Graphite tiles**





## Outline





## **Obsolete Tungsten GL**

#### 设计及工艺





## Service History of the Obsolete Tungsten GL





2017.11 First installation

Melt on the end boxes
Melt on the inner corners of the monoblocks

## First Modication of the Obsolete Tungsten GL





## Service History of the Obsolete Tungsten GL





2020.8-2021.4 upgrade

#### After 2021 Spring Campaign

## Service History of the Obsolete Tungsten GL







#### Cause Analysis for Damage:

#### 1. Melting on the top





#### Possible Reason:

- ) Incident heat flux on the corner
- E) Low heat exhaust ability of the top
- 3 Potential assemble misalignment

#### Suggestion:

1 Top of the GL should be on one monoblock



#### Cause Analysis for Damage:

#### 2. Melting on the Inner Fillet





Possible Reason:

- 1) Incident heat flux on the Fillet
- ) Fast Electron Layer close to the grill
- 3 Potential assemble misalignment

Suggestion:

1 Set the inner cornor below the grill(considering misalignment)



#### Cause Analysis for Damage:

#### 3. Melting on the End Box







#### Possible Reason:

Poor local heat exhaust ability
Closet location to the plasma

#### Suggestion: (1) Elongate the monoblock components

## Outline





## ASIPP

### Modification:



All corners shadowed to avoid leading edge
Bevel angles increasing from 11° to 15°
Thicnkess of Tunsgten reduced to 4.5mm

 $\therefore$  Inner corner being hidden behind the grill  $\therefore$  All corners being shadowed to avoid leading edge  $\Rightarrow$  Bevel angles (inner) increasing from 11° to 13°  $\Rightarrow$  Thicnkess of Tunsgten reduced to 4.5mm



#### Modification:



#### 3. Overall Structure



20



## Service under the EAST experimental operation





- No visible Damage found on the surface of the GL
- > A dividing line found between the shadowed and unshadowed area



#### **Estimation CHF**

Original



single phase or boiling heat transfer boundry

coolant pressure: 0.6MPa coolant temperature:27°C

#### **Using Tong-75**

| F | low speed<br>(m/s) | Coolant temperature<br>(°C) | CHF<br>(MW/m <sup>2</sup> ) |
|---|--------------------|-----------------------------|-----------------------------|
|   | 5                  | 27                          | ~29.8                       |
|   | 6                  | 27                          | ~32.2                       |
|   | 7                  | 27                          | ~34.4                       |
|   | 8                  | 27                          | ~36.5                       |
|   | 9                  | 27                          | ~38.3                       |
|   | 10                 | 27                          | ~40.1                       |

#### Improved



coolant pressure: 2MPa coolant temperature:27oC coolant speed : 7.4m/s

| Using Tong-75 |          |
|---------------|----------|
|               | CHF(MW/m |

#### critical warning temperature

| 41   |
|------|
| 29   |
| 2933 |
| 954  |
| 1080 |
|      |

#### by L. Han, ASSIP

mitigate

Original







#### **PHF(parallel heat flux)**



 $\rightarrow$  PHF=91.7MW/m<sup>2</sup>

#### VHF(vertical heat flux) VHF=PHF\*sin22° PHF=91.7MW/m<sup>2</sup> → VHF=29.8MW/m<sup>2</sup> Decreased by 13.3%

### **Summary and Prospect**



- In order to mitigate the cracks, melting or ablations on the GL of the 4.6GHz LH atenna, efforts have been made:
  - Upgrading the guard limiters from graphite tiles to tunsgten monoblock limiter
  - Ablation on the inner corner eliminated, by moving the corner behind antenna
  - Ablation on the top of the GL eliminated, by move the top of GL to one monoblock
  - Ablation on the bend of the GL miligated, by moving back of the bend from the plasma.
- The leakage in the last shot#129160:
  - High possibly caused by the CHF event, according to observation

## **Summary and Prospect**



- To Solve the CHF events
  - To increasing CHF of the GL as much as possible.
  - To ease vertical heat flux on the GL.
  - To get reliable heat flux data .
- Design of the new GL of 4.6GHz PAM LHWA in port B
  - End box with low heat exaust ability locating near the midplane where heat flux is extremly high





New LHWA





# **Thank You**

The authors acknowledge the financial support from the National MCF Energy R&D Program (2018YFE0312300)