Progress of JA-DEMO Divertor Conceptual Design: Coolant Distribution and Thermal Stress Analysis

Nobuyuki Aasakura¹, S. Kakudate¹, W. Chen², V. G. Dhumal², K. D. Gulay², H. Utoh², Y. Someya², Y. Sakamoto², and Joint Special Design Team for Fusion DEMO

¹National Institutes for Quantum Science and Technology (QST), Naka, ²QST, Rokkasho

15th International Symposium on Fusion Nuclear Technology
10-15 September 2023, Las Palmas de Gran Canaria, Spain
1. Introduction:
 JA-DEMO power handling and divertor concept

2. Coolant circuit design for PFUs in targets, baffles and dome

3. Heat & stress analysis of W-monoblock and CuCrZr-pipe target

4. Cooling concept for divertor cassette and stress analysis

5. Summary and Future work
1. JA-DEMO power handling and divertor concept

Divertor performance was simulated by SONIC code: \(f^*_{\text{rad} \text{div}} (= P_{\text{rad} \text{div}} / P_{\text{sep}}) \sim 0.8 \) is required.

- **JA-DEMO (steady-state):** high plasma performance of \(HH_{98y2} \sim 1.3 \), \(\beta_N \sim 3.4 \) is required in Ar seeding for \(R_p/a_p (8.5/2.4 \text{m}) \), \(B_t (6 \text{T}) \), \(q_{\text{eff}} (4.1) \) ⇒ \(f_{\text{rad main}} = P_{\text{rad main}} / P_{\text{heat}} \cdot 0.2 - 0.4 \) ⇒ \(P_{\text{sep}} = 250 - 290 \text{MW} \)

Conventional design concept based on ITER divertor is applied:

- Divertor encloses *all divertor plasma volume* for high \(P_{\text{sep}}/R \) design (30-35 \(\text{MWm}^{-1} \): ~2 times larger)
- Leg length is extended: \(L_{\text{div}} = 1.6 \text{m} \) (1.6 times longer than ITER) ⇒ reducing peak \(q_{\text{target}} = 5 - 7 \text{MWm}^{-2} \)

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>DEMO 2014</th>
<th>higher-κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa_{95})</td>
<td>1.65</td>
<td>1.75</td>
</tr>
<tr>
<td>(I_p) (MA)</td>
<td>12.3</td>
<td>13.5</td>
</tr>
<tr>
<td>(<n_e>(10^{19}\text{m}^{-3}))</td>
<td>6.6</td>
<td>7.2</td>
</tr>
<tr>
<td>(P_{\text{fusion}}) (MW)</td>
<td>1462</td>
<td>1694</td>
</tr>
<tr>
<td>(P_{\alpha} + P_{\text{aux}}) (MW)</td>
<td>376</td>
<td>435</td>
</tr>
<tr>
<td>(n_{\text{imp}}/n_e) (Ar, %)</td>
<td>0.24</td>
<td>0.60</td>
</tr>
<tr>
<td>(P_{\text{rad main}} / P_{\text{heat}})</td>
<td>0.22</td>
<td>0.41</td>
</tr>
<tr>
<td>(P_{\text{sep}}) (MW)</td>
<td>294</td>
<td>258</td>
</tr>
<tr>
<td>(P_{\text{sep}}/R_p) (MWm(^{-1}))</td>
<td>35</td>
<td>30</td>
</tr>
</tbody>
</table>

![Divertor geometry for SONIC simulation](image)

\[f^*_{\text{rad div}} \sim 0.8 \] preferable to low \(n_{e \text{ mid}} \)

JA-DEMO divertor design has been developed to handle the larger heat load and larger neutron load (nuclear heating) & fluence (dose) than ITER.

- **W-MB & CuCrZr-pipe PFU and 200°C coolant** are used to high heat load & low neutron flux (<2dpa/FPY) area (target) ⇒ replacement is required 1-2 year: degradation of CuCrZr mechanical property (softening).
- 290°C (15 MPa) coolant is used for baffles, reflectors, dome and cassette body (CB), where W-MB & F82H-pipe PFU is installed due to *higher neutron flux and lower heat load condition*.
- Coolant is distributed **parallel** to inner and outer targets (baffles) with **comparable flow velocity**.
- Remote maintenance (RM): one cassette covers 7.5° toroidal area and weight is ~22 ton. ⇒ 3 cassettes are replaced from 1 port (total 48 cassettes from 16 ports)
- Total nuclear heating (PFUs, coolant pipes, supports, cassette bodies): 113 MW (2.4 MW/cassette).

Divertor design in progress (2022)

- **(1) Coolant circuits for Target/Baffle PFU supports**
 - Inlet: 290°C
 - Outlet: 320°C
- **(2) Coolant circuit for Dome/Reflector PFC structure**
 - Inlet: 290°C
 - Outlet: 320°C
- **(3) Cooling concept and stress-analysis for cassette body**
 - Inlet: 200°C
 - Outlet: 230°C
2. Coolant circuit design for PFUs in targets, baffles and dome

Computational Fluid Dynamics (CFD) study for CAD-based design was carried out.

- Coolant \(200^\circ C, 5\text{MPa}\) is provided to inlet reservoir of outer target support \((W\text{-MB/CuCrZr-pipe PFU})\): divided into 4 rooms \((A1-A4)\) by 3 support ribs, 43 PFU pipes are connected to the bottom.

- \(V_{\text{cool}}\sim 10\text{ m/s}\) and inserting swirl tape are required to exhaust 10 MWm\(^{-2}\)-level heat load.

- Flow velocities \((V_{\text{cool}})\) in 43 pipes without swirl tape are adjusted by inlet mass flow and rib lengths: \(V_{\text{cool}}\): 10.3-10.9 m/s, pressure drop \((\Delta P_{\text{cool}})\): 0.3 MPa for total mass flow: 44 kg/s.

 note: \(V_{\text{cool}}\) and \(\Delta P_{\text{cool}}\) are increased with inserting t1 swirl tape to 13.8-14.5 m/s and 0.95 MPa, respectively.

Coolant distribution and Flow stream w/o swirl tape

Flow velocity in CuCrZr pipe \((w/wo\ swirl\ tape)\):

- Variation of \(V_{\text{cool}}\) is smaller than 5%-6%
Coolant distribution to W-MB/F82H-pipe PFUs for **outer Baffle**

- **V_{cool}** of high-T coolant is adjusted to reach T_{cool} from Breeding Blanket for elc.-generation.

- **Coolant** (290°C, 15MPa) is provided to inlet reservoir of outer baffle support: similarly divided into 4 rooms (A1-A4) by 3 support ribs.

- **Nuclear heat on W** is larger (5-9MWm⁻³), but **smaller plasma heat load**: 1-2 MWm⁻² (assuming P_{rad}). Note: outlet coolant (T_{cool}~320°C) will be used for electricity-generation (steam-turbine) via heat exchanger.

- V_{cool} values of 43 PFUs are adjusted between 3.4-3.55 m/s by **inlet mass flow** and **rib lengths**, and ΔP_{cool} is small (0.1MPa) for the total mass flow: 10.7 kg/s.

Flow velocity in F82H pipe:
- Variation of V_{cool} is smaller than 4.3%
Main coolant (290°C, 15MPa) pipes are provided under inner reflector to avoid gas exhaust route.

- n-heat (W) is large at Dome (7-10MWM-3), while plasma heat load is 1-2 MWm-2 \(P_{\text{plasma}} \& P_{\text{rad}}\) from SONIC.

- Mass flow in the main circuit is adjusted by orifices (O1-O7): (IR) 5 kg/s, (D) 16 kg/s, (OR) 8 kg/s.

\[V_{\text{cool}}: (IR) \ 2.74 \text{ m/s}, \ (D) \ 7.28 \text{ m/s}, \ (OR) \ 3.07 \text{ m/s} \ [\Delta V < 6\%] \]: Inlet/outlet pipes are located at other sides, and relatively low \(\Delta P_{\text{cool}}\)~0.5 MPa for the total mass flow: ~33 kg/s incl. dome support cooling.

\[\Rightarrow \ V_{\text{cool}}, \ mass \ flow \ and \ \Delta T_{\text{cool}} \ will \ be \ optimized \ after \ determining \ the \ dome \ support \ design. \]

Coolant circuit in Dome and Reflectors

Velocity streamlines

Flow velocities in FPUs

Nucl.-heat on W: Dome (7-10MWM-3), Ref.(5-6MWM-3)
3. Heat & stress analysis of W-MB and CuCrZr-pipe target

Temperature is increased at wet-area on fish-scale target: reducing margin to W-recrystallization

- Relatively high-T_{cool} (200°C) is provided to W&CuCrZr PFU for minimizing rad.-ind. hardening on Cu-alloy under high n-dose \Leftrightarrow Rad.-ind. softening is also anticipated at high-T_{CuCrZr} (>300°C).
- Heat load profile (plasma+radiation/neutrals) is applied on ITER-like (fish-scale) target: increasing heat load on wet area ($q_{\text{wet}} = q_{//} + q_\perp$). Nuclear heat ~4MWm$^{-3}$ is also added ~4MWm$^{-3}$. \Rightarrow 3D FEM calculation of heat transport and thermal stress.
- Steady-state heat load is restricted below $q_{\text{target}} = 9.4$ MWm$^{-2}$ on flat target ($q_{\text{wet}} = 13.5$ MWm$^{-2}$) by W-recrystallization (>1200°C) \Rightarrow Irradiation-creep/softening of CuCrZr is also anticipated at 351°C.

Note: SONIC simulation[2] expects peak-$q_{\text{target}} = 5$–7 MWm$^{-3}$ on flat target $\Rightarrow q_{\text{wet}} < 10$ MWm$^{-2}$

ITER-like W-monoblock /CuCrZr-pipe:
- smaller thickness (5mm) and width (25mm)
- 4-MB model & mesh for 3D FEM analysis

Note: heat transfer coefficient with swirl tape was used.
Elasto-plastic stress analysis on W-MB and CuCrZr-pipe

Repeating larger heat load cycles of $q_{\text{target}} = 11.2\text{MWm}^{-2}$ on flat target ($q^\text{wet} = 15.2\text{MWm}^{-2}$)

- Max. Temp. increased to W:1400°C (recrystallization) and to CuCrZr:365°C (creep/softening).
- Heat flux to coolant is increased from 18MWm$^{-2}$ (CHF ratio: 64%) to 22MWm$^{-2}$(79%).
- Stress-strain was evaluated, considering residual stress-strain after braze process (950°C).
- Large stress of W-MB and CuCrZr-pipe appears at inner surface under W-MBs, and at upper (inner surface) under W-MBs and side (outer surface) between W-MBs.

High heat flux in MB and at inner CuCrZr pipe

Temperature and heat load history for stress-analysis

During heat loading: max. Tresca stress on W:680MPa

Max. q: 21.8MWm$^{-2}$
CHF:28MWm$^{-2}$

X(left):-50 ⇔ +550MPa
Z(axis): -100 ⇔ +400Pa

Inner and outer surfaces of CuCrZr-pipe

T-stress:280MPa
Max T-stress:305MPa

Temperature trace

Max.-T
950°C
20°C 200°C 200°C
15 times

24.4(MWm$^{-2}$)
22
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Stress-Strain cycle of heat sink for small transient heat load

- Mechanical strain is increased at inner (expansion) and outer (compression) of CuCrZr pipe:
 at maximum Tresca-stress, Stress (σ_z) - Strain (ε_z) trace in Z-direction repeats similar trajectory

\Rightarrow Stress-Strain cycle ($\Delta\sigma_z \sim 300$ MPa, $\Delta\varepsilon_z \sim 0.25\%$) by $q_{\text{target}} > 10$ MWm$^{-2}$ on flat target ($q^{\text{wet}} = 15.2$ MWm$^{-2}$) may not be a critical lifetime issue in early DEMO stage, while W-recrystallization is progressing.

\Rightarrow Reduction in T_{cool} is necessary to handle slow transients such as 20 MWm$^{-2}$ (~10 s).

Strains (z-direct.) in CuCrZr pipe
RAFM steel (F82H) is used for cassette body (CB). PWR condition water (15 MPa, 290 °C) is supplied. **ITER:** lower temperature water (70-100°C, 4MPa) is supplied to reservoir separated by ribs (SS316L(N)-IG).

⇒ reinforcing rib & wall thickness and neutron shield as well as exhausting larger nuclear heat

Requirement of heat exhaust: 0.58 MW/cassette (totally 28 MW for 48 cassettes)

Assuming \(V_{cool} \): 0.45m/s (in two side routes) and 1.0m/s (in peddles) ⇒ expecting \(\Delta T_{cool} \approx 9°C \)

⇒ Sufficient heat exhaust from high nucl. heat area: inner surface below dome (305-330°C), and opening edge regions for coolant pipes and gas exhaust (\(\Delta T \) is lower than 110°C).

Nuclear heat distribution

Surface temperature distribution

Design proposal of PWR coolant (290°C,15MPa) from side routes to toroidal peddles
Analysis of heat transport (steady-state) and thermal stress

Total stress is below the critical value, while enforcing side-walls are required.

- Static stress on the side wall (t30mm) by 15 MPa coolant is widely increased to 250-280 MPa. Max. ~500MPa appears *locally at wide and bend region* ⇒ require to increase the thickness.
- Thermal stress analysis with 290°C (15MPa) coolant and n-heat (~0.9MW/cassette) showed:
 Thermal stress is increased *at the inner surface* (60-155 MPa), and *at support foot locations of PFUs and exhaust opening* (190-230 MPa).
 ⇒ Total stress: “gravity” + “pressurized water” + “thermal stress” less than 3Sm (423MPa)

Static stress by 15MPa pressurized water (25°C)

- Stress at side wall: 200-280MPa (except for wide region)

Thermal expansion and stress under NH and PWR water

Note: weight of PFCs on the support structures is considered.

- Maximum stress at side wall: ~250MPa to ~280MPa
- Local stresses: 503MPa (wide region)
- Thermal stress range: 60-155MPa
- Support foot stress range: 190-230MPa

Max. 192
Max. 220-230MPa

Thermal expansion and stress under NH and PWR water
Note: weight of PFCs on the support structures is considered.
CFD study of peddle and fin concept for cassette body

Peddle concept is investigated with adjusting Fin size and location (grouping)

- Toroidal peddle concept was investigated by CFD analysis:
 1. Peddle grouping (3) and Slit locations (~20 for each side) were determined:
 \[V_{\text{cool}} \text{ variation is decreased, but } \Delta P_{\text{cool}} \text{ is increased with decreasing grouping number such as 2.} \]
 2. Fin transparency (Tr: 0-50%) was determined to ~10% for a given mass flow rate: 17kg/s (inboard route) and 13kg/s (outboard route):
 \[\text{Ave. } V_{\text{cool}} \sim 0.9\text{m/s, } \Delta V/V_{\text{cool}} \sim 66\%, \text{ total outlet } \Delta p_{\text{cool}} \sim 1\text{MPa.} \]

- Optimizations such as reducing \(\Delta V_{\text{cool}} \), total mass flow rate, and series circuit (from 1-inlet to 1-outlet) are in progress.
- Heat transport and thermal stress analysis will be carried out.

Coolant route image:
Peddle grouping (3) and Fin locations

2-inlets and 1-outlet case:
\(V_{\text{cool}} \) adjustment is easier near Exhaust opening.
Summary of recent progress on JA-DEMO Divertor design (1)

- Design concept of JA-DEMO divertor has been developed for **Total plasma power** ($P_{\text{sep}} - P_{\text{rad}}^{\text{sol}} = 270\text{MW}, 5.6\text{MW/cassette}$) and **Total nuclear heating of 113 MW** (2.4 MW/cassette).
- Circuit design of **200°C coolant (5MPa)** for high heat load targets (W-MB & CuCrZr-pipe) and **290°C coolant (15MPa)** for high neutron-load PFUs (W-MB & F82H-pipe) and Cassette Body started.
- Parallel distributions for inner and outer targets/baffles, and Parallel circuit to dome, reflectors and support structure were investigated to avoid faster flow speed in the inboard PFUs.
- Peddle and fin cooling concept for CB was investigated to exhaust large n-heating and to reinforce rib&wall thickness and n-shield ⇒ improvement is in progress ⇒ thermal and stress analysis on 3D modeling.

Coolant circuits for JA-DEMO and tentative parameters

<table>
<thead>
<tr>
<th>Circuit Design</th>
<th>Inlet: 200°C, 5 MPa</th>
<th>79 kg/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-MB/CuCrZr-pipe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer target</td>
<td>43 units</td>
<td>14.2 (10.6) m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44 kg/s</td>
</tr>
<tr>
<td>Inner target</td>
<td>33 units</td>
<td>14.5 (10.6) m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 kg/s</td>
</tr>
<tr>
<td>Outlet: 218°C ($\Delta T_{\text{cool}}: -18\degree$)</td>
<td></td>
<td>4.05 MPa ($\Delta P_{\text{cool}}: 0.95\text{MPa}$)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuit Design</th>
<th>Inlet: 290°C, 15 MPa, 77 kg/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-MP/F82H-pipe</td>
<td></td>
</tr>
<tr>
<td>Outer baffle</td>
<td>43 units</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner baffle</td>
<td>33 units</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet: ~308°C ($\Delta T_{\text{cool}}: -18\degree$)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Total mass flow of 290°C coolant will be reduced, providing enough margin to $T_{\text{structure}}$ (F82H) limit.

But, increasing to $T_{\text{cool}} \sim 320\degree$ (Bleeding Blanket-level) is a critical ⇒ Divertor coolant will be used for pre-heat of the PWR coolant.
Summary and Future work for JA-DEMO divertor design (2)

- Heat removal of W-MB & CuCrZr-pipe PFU by 200°C coolant with adding nuclear heating:
 Heat transport analysis for fish-scale geometry showed that steady-state heat load is restricted
 (by W-recrystallization) below 9.4 MWm$^{-2}$ on flat target ($q^{\text{wet}} = 13.5$ MWm$^{-2}$ on fish-scale).
 In addition, irradiation-creep/softening of CuCrZr-pipe is also anticipated at 351°C.
- Elasto-plastic stress analysis showed that Stress-Strain cycle by $q_{\text{target}} > 10$ MWm$^{-2}$ on flat target
 (small transient heat load), $\Delta \varepsilon \sim 0.25\%$ may not be a critical lifetime issue, but reduction in T_{cool}
 is necessary to handle ITER-like slow transients such as 20MWm$^{-2}$ (~10 s).

Future work on baseline design and options:
- Thermal stress analysis of this baseline concept is established for further design improvement.
- Divertor cooling for F82H-base design (baffle, dome, cassette) by lower T_{cool} and P_{cool} coolant
 (such as 200°C, 5MPa) will simplify pressure boundary, temp. margin and cooling pipe number.
- Reduction in T_{cool} (lower than 200°C) and improvement for W-MB&CuCrZr-pipe design will be
 necessary to handle ITER-like slow transients such as 20 MWm$^{-2}$ (~10 s).
Stress analysis induced by halo currents during a VDE disruption

Induced EM force by halo current may cause large stress on cutting structure of CB

Assuming total hallow current (7.5MA) is driven from inboard to outboard in CB by VDE disruption, induced jxB electro-magnetic force and transient stress is evaluated:

- “Spherical shape” design of inboard attachment: it is easy for precise adjustment in RM. Large inboard shift (max. 45mm) due to rotating motion by the jxB force ⇒ Local Trasca stress is increased to 400-550MPa, due to narrow cassette (toroidal) width at coolant pipe slits
- “Key shape” (no rotation) will be preferable ⇒ Max. T-stress is reduced to 200-300MPa.

Spherical attachment: displacement and Stress

Central cross-section of CB

Assuming Key attachment (no rotation):

Stress is increased near attachment location

No rotation case

Toroidal width is smaller for coolant pipe opening

Spherical attachment: displacement and Stress

Central cross-section of CB

Assuming Key attachment (no rotation):

Stress is increased near attachment location

No rotation case

Toroidal width is smaller for coolant pipe opening