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Los Alamos National Laboratory 

(LANL)

We are dedicated to addressing complex 

national security issues and the world’s most 

difficult challenges

▪ By applying multidisciplinary science, technology & 

engineering capabilities

▪ In unique experimental, computational, and nuclear 

facilities

▪ With an agile, responsive, and innovative workforce

▪ And by partnering with peer institutions for mission 

success

Los Alamos: A Premier National-Security Science 

Laboratory for the 21st Century
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Tritium Systems Test Assembly
(1977-2008)

LANL fusion fuel cycle background

• “Everything but the reactor”

− Storage, processing, pumping

− Investigated all tritium streams

− Processing sized at 1/10th ITER scale

• Palladium Membrane Reactor

− Developed at LANL

− Combines hydrogen removal & 
separation into a single unit
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LANL fusion fuel cycle background

Tokamak Exhaust Processing System for ITER: Preconceptual Design

• Dynamic ASPEN models for TEP 

system design & sizing

• R&D for: 

− Catalyst selection

− Permeators, Cat beds, Palladium 
Membrane Reactor

• Tritium-compatible vacuum pump 

models that could be combined into 

a pump train

• Lab-validated unit operations models 

specific to the ITER fuel cycle
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Fuel cycle design: Outstanding challenges

• Closing the fuel cycle

− Minimizing any tritium losses from and holdup within the system

▪ Cost of tritium ($30,000/gm US – € 27,800)

▪ Scarcity 

▪ Safety concerns

− Improving process definition & increasing technical readiness level (TRL) 

− Low plasma burnup = high available recycle fraction

• Tritium inventory management, operations with Q2 (H/D/T)

• Tritium breeding – highly needed!!!!

More detail is needed for an eventual FPP/DEMO design, and overall tritium 

inventory is no small factor!
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Direct Internal Recycle Concept (DIR) 

• Minimizing processing steps to reintroduce DT exhaust to fueling 

• Reduces Q2 inventory in steps like isotope separation, storage

− Higher throughput = higher fraction of total inventory in use

− Could reduce size & complexity of larger, more expensive systems such as ISS

• Select highest-volume, highest-Q2 streams for immediate recycle

• Some proposed recycle 

concepts exhibit 

isotope selectivity

− Increases processing 
time
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https://doi.org/10.1016/j.cep.2017.07.021

Permeation Through Q2 Specific Membranes

• Permeation can accomplish the major function of DIR: hydrogen isotope 

separation

− Removes non- Q2 gasses, leaving pure Q2 stream

▪ Doping may be needed for 50:50 DT for fueling

− High TRL at large scale 

− Commercially available

− Fast response time

− Continuous process 

− Scaleup: high throughputs possible

Feed

Permeate

Retentate

Permeator/Diffuser

Q2 + Other gasses

Q2

Other gasses

High hydrogen 

pressure side

Low hydrogen 

pressure side

Feed Retentate

Hydrogen molecule

Hydrogen atom
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LANL permeator & experiment design 

• RSI model RS-3870 Permeator

• PdAg membrane (0.47 m2)

• Operated at 350 ⁰C

• Testing between 15-95% H2 in Argon
− Broad range of burnup fractions

− Permeation of remaining hydrogen for 
direct recycle to fueling

• Tested with tritium-compatible pumps

− Metal Bellows

− All-Metal Scroll (Normetex)

• Data generated to validate permeator 

models for DIR calculations
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Our modeling approach

• Goal Unit operations simulation for fuel cycle design

− Physics-based chemical engineering models of each operation

− Generate flexible software tools for user-specific design

▪ Generate models that are readily accessible to businesses and universities

− HPL laboratory capability/permeators able to test/validate/refine models

• Permeator modeling

− Emphasizes on steady-state model permeator design

▪ Explicit treatment of hydrogen isotopes and disproportionation reactions

▪ Includes retentate pressure drop and heat transfer

▪ Define the relationship between permeator geometry & performance 

− Coupling permeator & pump models

▪ Predicts pump train performance from individual pump models

▪ Predicts permeate pressures based on pump models 

− Using CAPE-Open standard for inter-platform compatibility
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Data Summary
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Comparison of Model Prediction to Experimental Results

0

1,000

2,000

3,000

4,000

5,000

6,000

0 1,000 2,000 3,000 4,000 5,000 6,000

P
re

d
ic

te
d

 P
e

rm
e

a
te

 F
lo

w
 (

s
c
c

m
)

Measured Permeate Flow (sccm)

• Data obtained with flows greater 

than breakthrough flow most useful 

for evaluating models

− Flows less than the are insensitive to 
permeability

− Excessively large flow rates do not 
test ability of model to predict 
breakthrough

• Model predicts permeate flow rate 

for over 70% of the data

− Still need to resolve differences for 
high permeate flow data
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Dynamic behavior

• Observed permeate dynamics depend on:
− Lag between flow controllers and permeator

− Volume of the permeator inlet plenum

− Dynamics of the membrane

− Pump-down time of permeate plenum

• Estimated time response for tests
− Permeator feed lag: 0.5 – 0.9 s

− Inlet plenum response: 2.5 – 5 s

− Permeate plenum pump down: 7 – 41 s

− Overall response less membrane response: 11 – 47 s

• Membrane response on the order of a few seconds

− Membrane response time increase with square of thickness

− Increasing membrane unlikely to impact permeator 
response time

Change in permeation in 

response to change in feed

𝜏 =
𝐷𝑄×𝑡

𝑥2
 

τ – time constant
DQ – diffusion coefficient
x – membrane thickness
t - time



1512/21/2023

Validity of Experiments with Protium
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𝑑Π

𝑑𝑥
= −Γ ∙ Π − Π𝑝𝑒𝑟𝑚 ∙ 1 − Π

Dimensionless Parameters

• Q2 partial pressure

• Membrane area

• Permeability

• Permeate pressure

Π =
𝑃𝑄2
𝑃𝑟𝑒𝑡

𝑥 =
𝐴

𝐴𝑡𝑜𝑡𝑎𝑙

𝜞 =
𝒌𝒑 ∙ 𝑨𝒕𝒐𝒕𝒂𝒍 ∙ 𝑷𝒓𝒆𝒕

𝑭𝒊𝒏𝒆𝒓𝒕 ∙ 𝜹

Π𝑝𝑒𝑟𝑚 =
𝑃𝑝𝑒𝑟𝑚
𝑃𝑟𝑒𝑡

Dimensionless Permeator Equation
Typical Q2 Concentration Profiles in the 

Retentate

• Smaller membrane area required for experiments with H2

• H2 representative D2 and T2 if dimensionless permeability is the same
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Applicability of Protium Experiments to Isotopic 

Mixtures

• Assuming disproportionation reaction 

are in equilibrium, mixture permeability 

can be estimated using a linear mixing 

rule 

• A model representing a D-T mixture as 

a pseudo-component closely 

approximates an exact model

• Permeator experiments with protium 

are applicable to isotopic mixtures

Q2 Concentration Profiles in the 

Retentate for a 50/50 Deuterium Tritium 

Mixture

𝒌𝒑,𝒎𝒊𝒙 = 𝒌𝒑,𝑯 ∙ 𝑿𝑯 + 𝒌𝒑,𝑫 ∙ 𝑿𝑫 +𝒌𝒑,𝑻 ∙ 𝑿𝑻
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Conclusions & Future work 

• Permeation may be a promising solution for DIR if isotope resolution is not fully 

necessary

− Higher TRL than alternatives

• Models generated for permeators predict performance for 70% of dataset 

• A thorough understanding of operating conditions needed will give the most 

efficient, specific design

− True for all unit ops AND whole-plant design

• Future work: 

− Goal: implement unit operations in system models to discuss broader impacts

− Isotope effects: further investigation & validation

▪ Change in permeate composition because of change in feed composition

− Opportunity: enhanced membrane design
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Thank you!
How to reach out: hpl@lanl.gov

Learn more about our work:

Alternatives to Normetex: 

Airsquared pump test report

LANL contributions to the Fusion 

Fuel Cycle

Hydrogen storage in 

uranium beds

mailto:hpl@lanl.gov
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The Fusion Fuel Cycle

• Major challenges for tritium use

– Retention/permeation through materials at high temperature [DOE tritium standard]

– β-radiation & decay

– Safe storage & accountancy of large quantities of gas

– Isotope exchange with protium (water, hydrocarbons)

• H2O+T2   HTO

• Tritium handling best practices:

– Pressure cascade

– Secondary containment

• Gloveboxes 

• Double-walled piping 

– Isolatable volume limits

– Minimizing processing temp
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