

Jograde

EUROfusion

P4B3 – Fuel Cycle & Tritium II

Admixed pellets for fast and efficient delivery of plasma enhancement gases: Investigations at AUG exploring the option for EU-DEMO

P. T. Lang, L.R. Baylor, Ch. Day, R. Dux, R.M. McDermott,
T. Giegerich, T. Gleiter, A. Kallenbach, B. Ploeckl,
V. Rohde, A. Zito, ASDEX Upgrade Team

15th International Symposium on Fusion Nuclear Technology Las Palmas de Gran Canaria, Spain, September 13, 2023

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 – EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

0

0 0

0 0

0 0 0 0 0 0

OUTLINE

- Core fuelling as part of Matter injection in EU-DEMO
- Pellet tool potential
- Initial admix investigations at AUG
- Technology used: fuelling layout only
- EU-DEMO request: Xe admix
- Ar for efficient radiative power removal in AUG
- Amending the data set: Kr and Ne (ORNL)
- Admixed pellets: tool deserves to step up efforts

Core fuelling & Matter injection in EU-DEMO

T Import Export 5 TFV.TMC Tritium Management & Control ³He Export Deuterium Supply Gas Gas Storage Distribution Pellet Injection Control & Monitoring **Dwell Bypass** TORUS **Gas Injection** Isotope Rebalancing Isotope Protium Separation Removal DIRL Fuel PEG Vacuum Separation storage 1 TFV.DIRL INTL Exhaust Water Vacuum Processing 2 TFV.INTL Detritiation Pumping Coolant Coolant Gloves Boxes * Exhaust Purification Loops Active Maintenance Facilities Detritiation **HVAC Systems HCPB** Tritium Extraction 8 Removal **3 TFV.OUTL** Tritium Conditioning WCLL Tritium Auxiliary 4 TEV.A Extraction Vacuum

Projected EU-DEMO fuel cycle

Chr. Day et al., Fusion Eng. Design 179 (2022) 113139

Matter injection tasks in ITER/EU-DEMO:

- Core particle fuelling of the burning plasma
- ELM control (potentially)
- Provide "plasma enhancement gases (PEG)" for radiative power dissipation and/or divertor buffering and/or performance enhancement
- Support ramp-up and ramp-down of the plasma
- Disruption mitigation by e.g. Shattered Pellet Injector (SPI) or Massive Gas Injection (MGI)

Pellet tool potential

Core fuelling system reference solution Space reservation in EU-DEMO CAD

P. T. Lang et al., Fusion Sci. Tech. 79 (2023) in print

Pellet system in EU-DEMO (inboard injection):

• Modelling shows requested core density can be achieved with feasible pellet flux $\Gamma_{Pel} \approx 7 \ x \ 10^{21}/s$

For 2 GW DT fusion needed: 1.4 x 10²¹/s

- Headroom for integration of guiding system e.g. with respect to BB penetration
- ➔ Smaller pellet size = less perturbation still o.k.
- Solution for control (discrete events!) at hand
- Handling of "missed-out pellets" at hand
- Concept for multi-actuation pellet system elaborated (JT-60SA system)

AUG pellet tool potential: H:D = 1:1 and N_2 admixture

Pellets (H₂,HD,D₂) produced with H:D=1:1 Applied to control core isotopic ratio

Tested admixing of N_2 in D_2 host fuelling pellet N_2 stabilizes pedestal and enhance performance 1% N_2 in supply gas $\rightarrow 0.8\% N_2$ in pellet

ASDEX Upgrade

AUG pellet launching system (PLS): Designed for fuelling

Stop cylinder centrifuge (precise announced arrival of pellets in plasma) Ice produced in cold cryostat, then rod extruded into storage

System designed 1986 for short pellet trains Operation with either pure H_2 or D_2 Mechanics lay out for low H_2/D_2 pellet density (e.g. "gas transparent" stop cylinder wall) Local LHe cooling of "copper block" cryo

Gas mixtures:

- H_2/D_2 at any ratio possible
- Admix gases with higher specific weight ρ
 Restriction of concentration ρ depended
 Some admixed gas gets frosted in gas supply line
 "Cryodistillation" due to not yet adapted design

AUG pellet launching system (PLS): Designed for fuelling

Looping guiding system Up to 880 m/s injection speed from inboard

Injection scheme redesigned for
"Magnetic high field side injection"
→ Plasmoid drift favours fuelling efficiency

AUG equipped with versatile diagnostics Pellet observation Plasma characteristics

Dedicated "Residual Gas Analyser" Quadrupol mass spectrometer Refined calibration process → Quantitative composition analysis

Test requested by EU-DEMO – Fuelling pellets with Xe

For radiative power removal EU-DEMO considers noble gases, Xe as "ultimate" challenge Radiation potential disproportionate high for AUG \rightarrow Low concentration (0.2 mol% in gas)

Uparad

First application at AUG – Actuation with Ar

First application for research topic "ELM suppression and avoidance scenarios": "Ar doped pellets for fast and efficient radiative power removal in ASDEX Upgrade"

First application at AUG – Actuation with Ar

10

Ar presence very well diagnosed in ASDEX Upgrade (Ar¹⁶⁺ CXRS) R.M. McDermott et al., Nucl. Fusion 61 (2021) 016019

Pellets with admixed Ar

- Ar and D deposition profiles correlate
 - ➔ Homogeneity within single pellet

 Highest local/temporal Ar fraction (Ar/e⁻) close to 10⁻³

➔ Ar component fully deposited deep inside plasma

Comparable Ar and D pellet particle sustainment times (\approx 30 ms)

Smooth Ar level only at sufficiently high pellet rate

Amending the noble gas scan – Kr admixed at AUG

Kr admixed in D fueling pellets injected into AUG plasma

Reproducing Ar behavior: highly efficient, dwindling concentration within train

Amending the noble gas scan – Ne admixed at ORLN

Cooperation IPP/ORNL on steady state high throughput extrusion Comparison of H_2 , D_2 and Ne in D_2

Large batch piston extruder Initial liquefier stage before solidifier Eutectic point 18 K for 2.3 mol% Ne in D₂ Gas fully converted into solid

Increasing Ne concentration

➔ Increasing extrusion force/flow rate

L.R. Baylor et al., Fusion Sci. Tech. 77 (2021) 728

Amending the noble gas scan – Ne admixed at ORLN

Cooperation IPP/ORNL on steady state high throughput extrusion Comparison of H_2 , D_2 and Ne in D_2

Large batch piston extruder Initial liquefier stage before solidifier Eutectic point 18 K for 2.3 mol% Ne in D₂ Gas fully converted into solid

Increasing Ne concentration

- → Increasing extrusion force/flow rate
- → Decreasing max. extrusion speed

P.T. Lang et al., Fusion Eng. Design 166 (2021) 112273

Less max. throughput for admixed ice

N₂ in D₂: about 80% of initial concentration kept during frosting

 $H_2/HD/D_2$ and Ne/D₂ gas can be frosted while keeping the stoichiometry

Compiling the collected data

Compiling the collected data

 $H_2/HD/D_2$ and Ne/D₂ gas can be frosting while keeping the stoichiometry AUG PLS: admix fraction in ice gets reduced with e.g. increasing triple point temperature

Compiling the collected data

$H_2/HD/D_2$ and Ne/D₂ gas can be frosting while keeping the stoichiometry AUG PLS: admix fraction in ice gets reduced with e.g. increasing triple point temperature

Gas	Atomic charge Z	Atomic weight (amu)	Concentration in D ₂ supply gas (mol%)	Triple point temperature [K]
Ne	10	20.18	1.937 ± 0.039	24.6
Ar	18	39.95	2.037 ± 0.041	83.8
Kr	36	83.80	1.278 ± 0.026	115.8
Хе	54	131.29	0.205 ± 0.004	161.4

Outlook

Admixing works already using "simple" fueling systems

- Admixed solids composed from immiscible crystallites but show high mechanical resilience!
- Better adapted extruders to yield homogeneous admixed concentration
- Multi-purpose pellet launching systems (as e.g. the JT-60SA PLS)

PLS system for JT-60SA under construction Commercial manufacturing (SENER) under F4E Start up configuration: Fuelling pellet source (up to 20 Hz) ELM pacing pellet source (up to 50 Hz) Simultaneous fuelling & pacing Tailored single pellet train to minimize cross-talk Third (admixed) pellet source can be added

G. Olivella et al., "Design and development of a hydrogen pellet centrifuge accelerator for the JT-60SA", PS4.41, this conference (Friday)

- Fusion power plants need versatile matter injection system
- Pellets optimized for core fuelling can be applied for PEGs too
- AUG PLS (and ORNL extruder) indicate technical potential
- Technical efforts needed to improve the performance

An investment likely to bear fruit!

Backup slides

Pellet actuation for fuelling: AUG leading the EU-DEMO relevant research

Plasma fuelling and density control to maximise fusion power: Robust model-based density real-time control algorithm developed and tested on ASDEX Upgrade for ITER and DEMO

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | P.T. LANG ET AL. | SEPTEMBER 13., 2023

AUG: Real-time density control

Heuristic control-oriented tokamak particle transport model (AUG&TCV) used in the Extended Kalman Filter framework to estimate the density profile

T.C. Blanken et al., Fusion Eng. Design 126 (2018) 87

P.T. Lang et al., Fusion Sci. Technology 78 (2022) 1

→ Use n_e <preselected 1D region> as parameter for core density control via pellets
 → Use neutral gas density in divertor (pellet resilient) for edge density control via gas
 Commissioning of model for MIMO control in progress

Missed-out detection: Example from AUG

P.T. Lang et al., Fusion Sci. Technology, in press

Isotope ratio control: Pellet analysis

HD-Pellets: Qualifying the actuator

Pellet injection into AUG vessel Gas analysis by RGA

HD pellets with H:D ratio very close to 1:1

Radiation predictions for different elements

Improvement beyond "simple" Z scaling

Investigation of "cooling factor" for 35 relevant elements by Cowan code via ADAS infrastructure → Produces good radiation predictions

T. Puetterich et al., 42nd EPS Conference on Plasma Physics, P4.111

AUG: RGA system

Composition of the gas coming from sublimated pellets measured through a calibrated differential pumping Quadrupole Mass Spectrometer (QMS). Sophisticated sniffer probe residual gas analysis system(s) Calibration with reference gases and versus Baratron at RGA

PEG carrier pellets – JT-60SA multi-purpose PLS

Ne doped H₂ pellets in LHD from LFS

- Reducing plasmoid drift
- Enhances core density assimilation

Start up configuration: Fuelling pellet source (Up to 20 Hz) ELM pacing pellet source (Up to 50 Hz) Simultaneous fuelling & pacing Tailored single pellet train to minimize cross-talk

Multi-purpose PLS: Control scheme

Multi-actuating pellet system: Step-by-step approach

Multi-tasking pellet system to cover issues beyond pure core particle fuelling

PELLET ACTUATOR development step by step:

AUG \rightarrow JT-60SA \rightarrow DEMO

Demonstrated:

- High core density
- ELM control
- Pellet resilient measurements
 t < 10 s

Commissioning ongoing:

- Simultaneous density
 & ELM control
- Pellet resilient feedback
 profile control
 t < 100 s

Design study ongoing:

- Full pellet resilient feedback control
- Simultaneously keep
 D T He profiles
 t ~ 2 h

