

Liquid metal MHD research at KIT

Fundamental phenomena and flows in complex blanket geometries

L. Bühler, and

H. J. Brinkmann, C. Courtessole, V. Klüber, C. Koehly, B. Lyu, C. Mistrangelo, J. Roth

www.kit.edu

Motivation – applications in nuclear fusion

International Thermonuclear Experimental Reactor ITER

Fusion plasma in magnetic confinement

Blankets around plasma

- □ shielding of radiation
- □ breeding of tritium
- □ conversion of nuclear power
- heat removal

with liquid metal PbLi as breeder and coolant

Magnetohydrodynamics (MHD)

Overview

Motivation

Liquid metal magnetohydrodynamic (MHD) flows

- phenomena
- equations and parameters

MHD research at Karlsruhe Institute of Technology KIT

□ facilities MEKKA and MaPLE supporting theoretical analyses

Some results

- □ duct or pipe flow
 - □ applied example, technological development
 - fundamental research

Work related WCLL blankets

- basic research
- blanket engineering

ISFNT-15, September 11-15, 2023

Leo Bühler and KIT MHD Team

Overview

Motivation

Liquid metal magnetohydrodynamic (MHD) flows

- D phenomena
- equations and parameters
- MHD research at Karlsruhe Institute of Technology KIT a facilities MEKKA and MaPLE supporting theoretical analyses
- Some results
 - □ duct or pipe flow
 - applied example, technological development
 - □ fundamental research
 - Work related WCLL blankets
 - □ basic research
 - blanket engineering

MHD Phenomena

MHD Phenomena

Liquid metal flow in a duct

□ Flow-induced currents in magnetic field

□ Lorentz force opposes the flow in the core \rightarrow large Δp

Strange velocity profiles
 uniform core
 thin boundary layers
 jets on side walls possible

Governing equations

Momentum
$$\rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) = -\nabla p + \rho \nabla^2 \mathbf{u} + \mathbf{j} \times \mathbf{B}$$

Lorentz force \mathbf{f}_L
Mass conservation $\nabla \cdot \mathbf{u} = 0$
flow-induced electric fieldOhm's law $\mathbf{j}/\sigma = -\nabla \phi + \mathbf{u} \times \mathbf{B}$

Charge conservation $\nabla \cdot \mathbf{j} = 0$

with proper scales for length L, velocity U, magnetic field B_0

Governing equations, nondimensional $\frac{1}{N} \left(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \frac{1}{Ha^2} \nabla^2 \mathbf{u} + \mathbf{j} \times \mathbf{B}$ Momentum Mass conservation $\nabla \cdot \mathbf{n} = 0$ Ohm's law $\mathbf{j} = -\nabla \phi + \mathbf{u} \times \mathbf{B}$ Charge conservation $\nabla \cdot \mathbf{j} = 0$ **Parameters** Interaction parameter $N = \frac{\sigma L B_0^2}{\sigma U}$ Hartmann number $Ha = LB_{0}$

Parameters in fusion

Interaction parameter
$$N = \frac{\sigma L B_0^2}{\rho U} = \frac{\text{electromagnetic force}}{\text{inertia force}} \approx 10^3 - 2 \times 10^5 *$$

Hartmann number $Ha = L B_0 \sqrt{\frac{\sigma}{\rho V}} = \sqrt{\frac{\text{electromagnetic force}}{\text{viscous force}}} \approx 6 \times 10^3 - 3 \times 10^4 *$

→ electromagnetic force is dominant !!

Overview

Motivation

Liquid metal magnetohydrodynamic (MHD) flows

- D phenomena
- equations and parameters

MHD research at Karlsruhe Institute of Technology KIT

□ facilities MEKKA and MaPLE supporting theoretical analyses

- Some results
 - □ duct or pipe flow
 - □ applied example, technological development
 - □ fundamental research
 - Work related WCLL blankets
 - □ basic research
 - blanket engineering

MHD platform at KIT: MEKKA & MaPLE

MEKKA and MaPLE are unique and complementary facilities

- for addressing MHD challenges for liquid metal blankets
- □ fusion relevant MHD parameter range
- big experimental volume for complex geometries
- experiments for combined MHD and buoyancy effects

□ Fundamental experiments in generic geometries for

- improving the understanding of coupled multiphysics phenomena
- provide insight for blanket designers

Development of predictive tools and validation

- extension of benchmark database by experiments
- Technological development under prototypical conditions
 - test measuring techniques
 - □ development and test of insulating flow channel inserts (FCI), etc.

□ Validation of design concepts for liquid metal blankets (mock-up tests)

Magnetohydrodynamische Experimente mit Natrium Kalium KArlsruhe

Liquid metal loop

- □ Model fluid: eutectic sodium-potassium ($Na_{22}K_{78}$ used as model fluid)
- \Box Inventory 2001, pump (9 bar, 25 m³/h), thermostat, instrumentation, ...
- □ Advantage of *NaK*: operate at room temperature
 - > thermoelectric perturbations are minimized \rightarrow highly accurate results
 - ▶ high (σ/ρ) → fusion relevant parameters at available magn. field

Liquid metal loop

- □ Model fluid: eutectic sodium-potassium ($Na_{22}K_{78}$ used as model fluid)
- □ Inventory 200 1, pump (9 bar, 25 m³/h), thermostat, instrumentation, ...
- □ Advantage of *NaK*: operate at room temperature
 - > thermoelectric perturbations are minimized \rightarrow highly accurate results
 - → high (σ/ρ) → fusion relevant parameters at available magn. field

Big dipole magnet

- □ Maximum field: 2.1 T
- □ Large volume of uniform magnetic field: $800 \times 480 \times 165 \text{ mm}^3$
 - > experiments in large and complex geometries such as blanket mock-ups

Maple

Magnetohydrodynamic PbLi Experiments

ISFNT-15, September 11-15, 2023

Leo Bühler and KIT MHD Team

MaPLE

□ Built and first operated at UCLA

PbLi flows under transverse magnetic field (prototypical fluid)

Upgraded with EUROfusion

➢ for combined MHD and buoyancy effects

□ Main components

PbLi loop (up to 450°C), storage tank (701), pump (6 bar, 7.2 m³/h), air cooler (70 kW),

MaPLE

□ Built and first operated at UCLA

PbLi flows under transverse magnetic field (prototypical fluid)

Upgraded with EUROfusion

➢ for combined MHD and buoyancy effects

□ Main components

- PbLi loop (up to 450°C), storage tank (701), pump (6 bar, 7.2 m³/h), air cooler (70 kW),
- Dipole magnet (20 ton, 2 T) with hydraulic positioning frame for various orientations

Overview

Motivation

Liquid metal magnetohydrodynamic (MHD) flows

- D phenomena
- equations and parameters

MHD research at Karlsruhe Institute of Technology KIT

□ facilities MEKKA and MaPLE supporting theoretical analyses

Some results

- □ duct or pipe flow
 - applied example, technological development

- □ fundamental research
- Work related WCLL blankets
 - □ basic research
 - blanket engineering

Insulating Flow Channel Inserts FCIs

for pressure drop reduction

Currents find shortcut through walls

 \rightarrow high current density j

 \rightarrow strong Lorentz force \mathbf{f}_L

 \rightarrow large pressure drop $\nabla p \Box \sigma UB_0^2$

Sandwich – type FCI

- \rightarrow insulation is protected by thin sheets
- \rightarrow FCI fabricated and tested at KIT

Koehly et al. Fusion Science and Technology, 2017, 72, 660

Insulating Flow Channel Inserts (FCI)

- \rightarrow interrupt currents into the wall
- \rightarrow reduce pressure drop

Sandwich – type FCI

- \rightarrow insulation is protected by thin sheets
- → FCI fabricated and tested at KIT Koehly et al. Fusion Science and Technology, **2017**, 72, 660

Insulating Flow Channel Inserts (FCI)

- \rightarrow interrupt currents into the wall
- \rightarrow reduce pressure drop
- \rightarrow gaps between two FCI
 - local leakage currents j_{3D}
 - strong local 3D effects

3D effects at gaps between two FCIs

Electric currents and potential near an axial gap between two FCIs

3D effects at gaps between two FCIs

Flow properties in horizontal symmetry plane y = 0

Gaps between two FCIs, experiments in MEKKA

Koehly et al. *Fusion Science and Technology*, **2017**, 72, 660

Gaps between two FCIs, experiments in MEKKA

Experiments confirm

- reduction of pressure gradient for fully developed flow by a factor 13
- □ 3D effects near gap between FCIs
- \Box locally increased pressure drop Δp_{3D}
- □ scaling law for Δp_{3D} confirmed for a wide range of *Re* and *Ha*

Overview

Motivation

Liquid metal magnetohydrodynamic (MHD) flows

- phenomena
- equations and parameters

MHD research at Karlsruhe Institute of Technology KIT

□ facilities MEKKA and MaPLE supporting theoretical analyses

Some results

□ duct or pipe flow

- □ applied example, technological development
- □ fundamental MHD problem
- Work related WCLL blankets
 - □ basic research
 - blanket engineering

MHD flow in a non-uniform magnetic field B(x)

complementary to Picologlou & Reed, Kluwer, 1989, 71-77

Flow into a magnet

□ turbulent flow at high *Re* entering a magnet

- □ increasing transverse potential difference along x→ 3D current loops
 - \rightarrow extra Lorentz forces

Flow in non-uniform B-field

Flow in non-uniforr

Flow into a magnet

- □ turbulent flow at high *Re* enter
- □ increasing transverse potentia
 → 3D current loops
 → extra Lorentz forces

□ experiments

 \rightarrow yield potential data on surface

MEKKA experiment at KIT

Flow in non-uniform B-field

Flow into a magnet

□ turbulent flow at high *Re* entering a magnet

 \Box increasing transverse potential difference along x \rightarrow 3D current loops \rightarrow extra Lorentz forces

□ experiments \rightarrow yield potential data on surface

□ asymptotic theory

 \rightarrow reconstruction of 3D velocity from measured surface data

 $u(y,z) \approx B^{-1} \frac{\partial \phi}{\partial z}$

Flow in non-uniform B-field

near entrance to B-field

high velocity at sidesreduced velocity in center

Bühler et al. *Fusion Engineering and Design*, **2021**, 168, 112590

MEKKA experiment at KIT

Flow in non-uniform B-field

Numerical simulation of turbulent flow entering a magnetic field

ISFNT-15, September 11-15, 2023

Overview

Motivation

Liquid metal magnetohydrodynamic (MHD) flows

- D phenomena
- equations and parameters

MHD research at Karlsruhe Institute of Technology KIT

□ facilities MEKKA and MaPLE supporting theoretical analyses

Some results

- □ duct or pipe flow
 - □ applied example, technological development
 - fundamental research

Magneto convective heat transfer at cooling pipes

Magneto-convection

Experimental and theoretical results are available for

- Rayleigh Bénard convection (differentially heated horizontal layer of fluid)
- □ differentially heated vertical gap
- □ heat transfer in pipe and duct flow

Zikanov et al. Mixed convection in pipe and duct flows with strong magnetic fields, *Applied Mechanics Reviews*, **2021**, 73, 010801-1-35

Lack of knowledge on

□ MHD flows around obstacles with heat transfer (cooling pipes)

 \rightarrow need for analyses \rightarrow definition of a generic problem

Magneto-convection around obstacles

Definition of generic problem

adiabatic box filled with GaInSn

electrically insulating walls

 \Box differentially heated cylinders $T_{1,2} = \overline{T} \pm \Delta T$

□ Parameters:

$$Gr = \frac{g\beta\Delta TL^3}{v^2}, Ha = BL\sqrt{\frac{\sigma}{\rho v}}$$

Magneto-convection around obstacles

Mistrangelo et al. Heat and Mass Transfer, 2023

Mistrangelo et al. 2023, this conference, PS-328

Magneto-convection around obstacles

Experiments

Magneto-convection around obstacles thermal stratification borizontal isotherms

Heat transfer quantified by Nusselt number

-- strong convection --

Overview

Motivation

Liquid metal magnetohydrodynamic (MHD) flows

- D phenomena
- equations and parameters

MHD research at Karlsruhe Institute of Technology KIT

□ facilities MEKKA and MaPLE supporting theoretical analyses

Some results

- □ duct or pipe flow
 - □ applied example, technological development
 - fundamental research

Work related WCLL blankets

- basic research
- □ blanket engineering

Flow in a complex WCLL TBM-like geometry

Leo Bühler and KIT MHD Team

TBM mock-up in MEKKA

TBM mock-up in MEKKA

Karlsruhe Institute of Technology

ISFNT-15, September 11-15, 2023

Experiments in MEKKA and simulations

Numerical simulation: Flow paths along manifolds and BUs and radial velocity profiles in middle plane

Measured pressure distribution along typical flow paths

Mistrangelo et al. Fusion Engineering and Design, 2023, 193, 113752

Courtessole et al. 2023 this conference, PS-135

Experiments in MEKKA and simulations

H5

Ha=1000, Re=1000

draining manifold

Results

- total pressure drop is acceptable
- > major pressure drop occurs in manifolds
- non-uniform flow distribution among breeder units
- suggestions made for design improvement to achieve more homogeneous flow partitioning in breeder units

Bühler & Mistrangelo, 2023 IEEE Transactions on Plasma Science, Proc. of SOFE conference

Numerical simulation: Flow paths along manifolds and BUs and radial velocity profiles in middle plane

Measured pressure distribution along typical flow paths

Mistrangelo et al. Fusion Engineering and Design, 2023, 193, 113752

Courtessole et al. 2023 this conference, PS-135

Summary and future plans

MHD research at Karlsruhe Institute of Technology KIT

- □ MEKKA and MaPLE
- Development of predictive tools
- □ Study of MHD flows for fusion relevant parameters
 - □ basic research
 - applied engineering problems

Outlook

- □ Full commissioning of MaPLE
 - □ first experiments in a circular pipe → pressure drop → potential data, → $\mathbf{B}(x)$
 - \Box mixed convection MHD heat transfer \rightarrow horizontal, inclined, vertical ducts
- □ Scaled blanket mock-up test in MEKKA magnet with PbLi from MaPLE

Results will support theoretical developments and blanket engineering

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

