Laser-driven proton-boron fusion reactions for alpha-particle production

<u>M. Huault 1,</u>

T. Carrière², H. Larreur^{1,2}, Ph. Nicolaï², D. Raffestin², D. Singappuli², K. Batani³, M. Cipriani⁴, F. Filippi⁴, M. Scisciò⁴, C. Verona⁵, L. Giuffrida⁶, V. Kantarelou⁶, S. Stancek⁶, N. Boudjema¹, R. Lera⁷, J.A. Pérez-Hernández⁷, L. Volpe^{7,8}, A. Bonasera⁹, M.R.D. Rodrigues⁹, D. Ramirez Chavez⁹, F. Consoli⁴,

D. Batani²

¹USAL ²University of Bordeaux, CNRS/CELIA/CEA ³IPPLM ⁴ENEA ⁵DIIEM ⁶ELI-Beamlines ⁷ CLPU ⁸ETSIAE ⁹Texas A&M Cyclotron Institute

PARTICIPATING GROUPS

p-11B fusion reaction: Background and purpose

α-particles are produced by the proton-boron nuclear fusion reaction:

- The proton-boron nuclear reactions is interesting for multiple applications
 - fusion for energy : quasi aneutronic reaction
 - α production
 - → for cancer therapy¹
 - for radioisotope production²

This reaction requires very high temperature

Conventional compression approach is not possible to ignite fuel Laser initiated p-¹¹B nuclear fusion reaction

¹Cirrone et al, Sci. Rep. 8, 1141 (2018) ²Szkliniarz et al, Applied radiation and istopes (2016)

13/09/23 - 15th International Symposium on Fusion Nuclear Technology (ISFNT-15) - Marine Huault

101

100

Fusion Cross Section

Protons are accelerated by several mechanisms during laser-matter interaction

- → Protons accelerated at the <u>rear side</u> of the target by **Target Normal Sheath acceleration (TNSA) mechanism**
- → Protons accelerated at the front side of the target by Radiation Pressure Acceleration (RPA) mechanism

Two main approaches to trigger p-¹¹B fusion reactions in laser-matter experiments

→ Since Belyaev work in 2005, using laser-driven proton acceleration, the p-B reaction yield has continuously increased up to a few $10^{10} \alpha$ /sr in 2020⁵.

 [1] V.S. Belyaev et al., Phys. Rev. E, (2005)
 [2] C. Labaune et al., Nat. Commun. 4, (2013)
 [3] A. Picciotto et al., Phys, Rev. X 4, (2014)

 [4].D. Margarone et al, Plas. Phys. Contr. Fus. 57, 014030 (2015)
 [5] L. Giuffrida et al., Phys. Rev. E101, (2020)
 [6] D. Margarone et al Front. Phys. 8, 345 (2020)

 [7] J. Bonvalet et al, Phys. Rev. E 103, 053202 (2021), [8] D. Margarone et al Applied Sciences 12, 1444 (2022)
 [6] D. Margarone et al Front. Phys. 8, 345 (2020)

13/09/23 - 15th International Symposium on Fusion Nuclear Technology (ISFNT-15) - Marine Huault

Complementary diagnostics must be used to accurately measure α -particles

→ Low reaction rate (10⁻⁵ α -particle/H⁺ produced) and other ion species from contaminant layer interfere with alpha detection

 \rightarrow Only α produce at surface of the target can escape and be detected (5 MeV α -particles cross 20 μ m thick Boron)

Thomson Parabola Spectrometer(TP):

 \rightarrow E and B field deflect vertically and horizontally the incoming charge particle: parabolic traces \rightarrow Discrimination of ions according to Z/A: the α-particle spectrum hidden by other ions with same Z/A (C, N, ...)

Complementary diagnostics must be used to accurately measure α -particles

→ Low reaction rate (10⁻⁵ α -particle/H⁺ produced) and other ion species from contaminant layer interfere with alpha detection

 \rightarrow Only α produce at surface of the target can escape and be detected (5 MeV α -particles cross 20 μ m thick Boron)

Time of flight (TOF):

- → information on particle velocity obtained with their time of arrival on detector at some distance from the target:
 - → easily identifies energetic protons but toughly the following ions
- → No discrimination on particles but only on their velocities Mass/energy ratio.
- \rightarrow Bunch α /heavy ions/H⁺ mixed

Signal from oscilloscope

Complementary diagnostics must be used to accurately measure α -particles

- → Low reaction rate (10⁻⁵ α -particle/H⁺ produced) and other ion species from contaminant layer interfere with alpha detection
- \rightarrow Only α produce at surface of the target can escape and be detected (5 MeV α -particles cross 20 μ m thick Boron)

The Solid-state nuclear track detector (CR39):

- → exposition to ionizing radiation generates local damaging i.e. tracks after etching
- → detect a single ion with energy information according to hole diameter
- → Relation between diameter track and energy is overlapping between ions
 - ➔ Problem of discrimination

Image of Cr39 after etching from microscope x100

Complementary diagnostics must be used to accurately measure α -particles

→ Low reaction rate (10⁻⁵ α -particle/H⁺ produced) and other ion species from contaminant layer interfere with alpha detection

 \rightarrow Only α produce at surface of the target can escape and be detected (5 MeV α -particles cross 20 μ m thick Boron)

\rightarrow Use of <u>shielding</u> / <u>filter</u> can help to <u>discriminate</u> the α -particle contribution

Al filter [um]	Cut-off energy [MeV]		
	Н	α	С
5	0,47	1,6	5,75
10	0,75	2,8	11,5
15	1	4	17,5

Experimental campaign at CLPU laser facility (March 2023)

- Use of high power and high repetition rate laser VEGA-3^{1,2}
- → Highly improved statistics
- → Better control of the parameters and measurements of studied processes

Objectives

- \rightarrow Improve α -production and detection with two experimental schemes
- ➔ Test new target type
- → Comparison of fusion products yield

2 set-up configurations

Laser driven proton acceleration on B type targets: Pitcher-catcher
 direct laser-target irradiation of B type targets: Direct irradiation

[1] C. Méndez et al., Fourth International Conference on Applications of Optics and Photonics,11207 (2019)

[2] Volpe L. et al., High Power Laser Science and Engineering, 7 e25 (2019)

ISMO

ICFO

CESTA

Salamanca

Catcher targets: BN (5mm)

Diagnostics (in situ): Thomson Parabola (TP); Time of Flight (TOF); Cr39

Laser-target interaction was first optimized and TNSA proton characterized

→Experimental proton spectrum was reconstructed thanks to TP diagnostic

13/09/23 - 15th International Symposium on Fusion Nuclear Technology (ISFNT-15) - Marine Huault

In TNSA, several ion species are accelerated at the rear side of the target

Ions from contaminant layer (H, C, N, O....) can interact with the detectors \rightarrow difficult to separate α -particles contribution

→TNSA shielding between pitcher target and Cr39/TOF detectors to protect from contaminants interaction

A shielding was placed between the pitcher target and one of the **Cr39** to prevent TNSA emission

On Cr39, TNSA shielding efficiency proven during reference shot without catcher target

When adding the catcher target, other particles can reach the detectors

→ions from contaminant layer interact with the catcher → presence of diffused particles and secondary nuclear reactions products on the detectors

 \rightarrow Use **filters** to discriminate between α and other ion species

Cr39 @30º – no filter

Cr39 design holder

Cr39 images on microscope x100

When adding the catcher target, other particles can reach the detectors

 \rightarrow ions from contaminant layer interact with the catcher \rightarrow presence of **diffused particles and** secondary nuclear reactions products on the detectors

 \rightarrow Use **filters** to discriminate between α and other ion species

→ Possible discrimination between H+ and ions on histogram, but not between ion species

When adding the catcher target, other particles can reach the detectors

→ions from contaminant layer interact with the catcher → presence of diffused particles and secondary nuclear reactions products on the detectors

 \rightarrow Use **filters** to discriminate between α and other ion species

Al filter [um]	Cut-off energy [MeV]		
	Н	α	С
5	0,47	1,6	5,75
10	0,75	2,8	11,5
15	1	4	17,5

→ Possible discrimination between H+ and ions on histogram, but not between ion species

→ Filter thickness should stop heavy ions and so allows discriminating between ion species

Reconstruction of α -particle spectrum with Cr39 thanks to calibration

A calibration of Cr39 with α -emitting source and Accelerator beam has been done

Conversion track diameter to energy
 Allows for α spectrum reconstruction

Experimental spectra - Cr39

Total alpha number/sr/shot				
	Exp. data			
>1,6 MeV (5 umAl)	1e7			
> 2,8 MeV (10 um Al)	3,5e6			
> 4 MeV (15 um Al)	8e5			

→ Strong gap between regions with/without filter

→ Other particles contribution ?

Simulations confirm the first conclusions on α -particle contributions

- → α emitted / H⁺ emitted ≈ 2.510⁻⁵ (3 MEV) 5.10⁻⁵(10 MEV)
- → H^+ (diffused+nuclear)/ H^+ emitted $\approx 2.10^{-5}$ (3MEV H^+) 8.10⁻⁵ (10MEV H^+)
- C diffused/ C emitted $\approx 10^{-6}$ \rightarrow
- → B from C or H⁺ emission negligeable $\approx 10^{-7}$
- Fragmentation C starts at 12 MeV (H^+ and α negligeable) **→**

Direct irradiation configuration set-up

Catcher targets: CH-BN (2µm-100µm)

→ use of CH deposition as a front layer allows to know the H content in front layers
 → This can allow better comparison with numerical simulations

Diagnostics (in situ): Thomson Parabola (TP); Time of Flight (TOF); Cr39

13/09/23 - 15th International Symposium on Fusion Nuclear Technology (ISFNT-15) - Marine Huault

In direct irradiation, the detectors detect all particles accelerated from target front side

Ions from contaminant layer localizes at the front target side are also emitted by TNSA mechanism

- → We placed the Cr39 at 3 different angles to distinguish isotropic/no isotropic emissions
- → We used **2 filter thickness** (10 and 15 um Al)

Angular distribution comparison of ions detected by CR39 for filtered region with 10 um (blue) and 15 um (red) Al thickness.

 \rightarrow Tendency curve for 10 um Al and 15 um Al seems in agreement with isotropic distribution of α particle

→Only carbons with energy > 11,5 MeV can reach the Cr39 detector in the region of 10 um Al filter
 →Only carbons with energy > 17,5 MeV can reach the Cr39 detector in the region of 15 um Al filter

Al filter [um]	Cut-off energy [MeV]		
	Н	α	С
5	0,47	1,6	5,75
10	0,75	2,8	11,5
15	1	4	17,5

Simulations estimate the ions distribution and energy at the detector positions

→ According to simulation, max Carbon energy up to 10.5 MeV at 26^o respect to normal front side target \rightarrow We expected all carbons to be stopped by 10 and 15 um Al filters FRONT SIDE: Carbon and α spectrum 1015 @ 26 Carbone à 70° @ 709 @ 38 º 1013 70° arbone à 26° → α /C≈ 1e-4 1011 **Cut-off energy** Al filter arbone à 38° 10 dN/dE [um] [MeV] α à 38° 10 н α 10 5 0.47 1.6 10³ 2,8 10 0,75 10^{1} 15 4 Ŕ 10 12 E en MeV 135° 315 270 270 C angular dist. α angular dist. H+ angular dist.

13/09/23 - 15th International Symposium on Fusion Nuclear Technology (ISFNT-15) - Marine Huault

С

5,75

11,5

17.5

Direct irradiation

Conclusion and Perspectives

Perspectives

- Laser induce p-¹¹B fusion reaction has been tested on HRR laser installation
- Two configurations (Pitcher-Catcher and Direct irradiation) set-up have been tested
- Source of Alpha estimated per joule is comparable to previous experiments
- \rightarrow Using the HRR could allow to get a high brightness α -particle source

Pitcher-catcher: 3.5e6 α/sr/shot $(\alpha > 2,8 MeV@30^{\circ})$

Direct irradiation : 1.6e6 α /sr/shot (α > 2,8MeV@38°)

Radioisotopes ⁴³Sc via the reaction ⁴⁰Ca(α ,p)⁴³Sc is a positron emitter and considered as the "radioisotope of the future" in the field of imaging.

13/09/23 - 15th International Symposium on Fusion Nuclear Technology (ISFNT-15) - Marine Huault

17

² M. I. K. Santala, et al. 2001. Applied Physics Letters, 78(1)

Thank you

Email: marine.huault@usal.es

Acknowledgements:

13/09/23 - 15th International Symposium on Fusion Nuclear Technology (ISFNT-15) - Marine Huault

Scandium radioisotope production using α -particle beam

→ Radioisotopes ⁴³Sc via the reaction ⁴⁰Ca(α ,p)⁴³Sc considered as the "radioisotope of the future" in the field of imaging *.

Radionuclides of scandium: - **scandium-43 and scandium-44 (**^{43/44}**Sc)** → as positron emitters - **scandium-47** (⁴⁷Sc) → beta-radiation emitter

Laser-initiated ${}^{11}B(p,\alpha)2\alpha$ nuclear reaction

<u>The α -particle measurement is challenging</u>

 \rightarrow Nuclear reactions induced by α -particles/protons could be used as diagnostics

- gamma peaks can only be measured after shot with a High Purity Germanium radiation detector (HPGe)

 \rightarrow possible in the pitcher-catcher geometry,

→ complicated in the directed irradiation because a part of the matter is ablated

ex : $p + {}^{10}B \rightarrow {}^{11}C^* \rightarrow {}^{7}Be^* + \alpha \rightarrow {}^{7}Li + \gamma$ (477 KeV) $p + {}^{11}B \rightarrow {}^{11}{}_{6}C + n \rightarrow ({}^{11}{}_{5}B + e^+ + \nu) + n$ (511 KeV) $\alpha + {}^{40}Ca \rightarrow {}^{43}Sc + \gamma$ (373 KeV)

Experimental campaign at CLPU laser facility (March 2023)

Pitcher-catcher configuration: Comparison between targets

Several target have been tested with different angle and composition $B @45^{\circ}(2mm); BN @70^{\circ}(5mm); BNH6 @60^{\circ}(1mm)$

→ high angle between catcher -pitcher can enhance the p-11B fusion reaction at the Surface of the catcher
 → Alpha are generated in Surface of the catcher and can escape easily the target