ISFNT-15

Progress on Blanket Technology Development in China

Presented by Xiaoyu WANG 2023.9.10-15 • Spain

CONTENTS

- Introduction of Tritium Breeding Blanket for Fusion Reactor
- China MCF Development Strategy and Blanket Development Plan
- Blanket Materials and Fabrication R&D Progress
- Blanket Test Platform Development Progress
- 5 Summary

Introduction of Tritium Breeding Blanket for Fusion Reactor

Fusion reactor and blanket

Tritium plant

- > Tritium self-sufficiency
- Heat removal
- Radiation shielding

Tritium Breeding Blanket

Challenges from work conditions

- High surface heat flux: 1~2 MW/m² on FW
- High neutron wall loading: ~2.0 MW/m²
- High neutron irradiation: 10~20 dpa/year in FW
- High magnetic field: ~7 Tesla
- Safety reliability

Burning: ~6.4g Tritium/hour

Fueling: several hundreds grams Tritium/hour

Material Selection in Blanket

- FW Armor: Protect blanket against high heat flux
 - W, Be, CFC, etc.
- Tritium Breeder: React with fusion neutron and generate tritium
 - Li-based ceramic, Li/PbLi, FLiBe, etc.
- Neutron Multiplier: React with fusion neutron and multiply neutrons
 - ◆ Be/Be alloy, PbLi alloy, etc.
- Structural Material: Keep structural integrity of Blanket under the loads of operation
 - ◆ RAFM steel, V alloy, SiC_f/SiC, W alloy, etc.
- Coolant: Bring heat out of blanket and transfer heat power to electrical generation loop
 - Helium, Water, Supercritical CO₂, Liquid Li/PbLi, FLiBe, etc.
- Shielding Material: Protect VV and superconducting coils against irradiation
 - Steel, Water, C, etc.

Different Blanket Concepts

Concept	Abbre.	FW coolant	BZ coolant	Tritium breeder	Neutron multiplier	Structural material	Countries	To be test in ITER
Helium-cooled solid breeder	HCSB HCCB HCPB	He	He	Li ₄ SiO ₄ Be Li ₂ TiO ₃ Bo		RAFM (ODS)	CN, EU, IN, JA, KO, RF, US	V
Water-cooled solid breeder	WCCB	H ₂ O	H ₂ O	Ĺi₂O Ů	Be ₁₂ Ti		CN, JA, KO	\checkmark
Gas-cooled liquid PbLi	HCLL COOL	He/S-CO ₂	He/S-CO ₂		PbLi		CN, EU, IN, RF, US	
Water-cooled liquid PbLi	WCLL	H ₂ O	H ₂ O	PbLi			CN, EU	\checkmark
Dual coolant liquid PbLi	DCLL	He/H ₂ O	PbLi				CN, EU, JA, US	
Self-cooled molten salt		FLiBe	FLiBe	FLiBe	FLiBe		JA, US	
Dual coolant molten salt		He/H ₂ O	FLiBe	FLiBe	FLiBe		US	
Self-cooled liquid Li-V		Li	Li	Li	-	V alloy	JA, RF, US	
Dual coolant liquid Li-V		He/H ₂ O	Li	Li	-	V alloy	US	

2

China MCF Development Strategy and Blanket Development Plan

China MCF Development Strategy

CFETR/DEMO

ITER

- Electricity generation into grid
- Safety, reliable, efficient
- Fusion technology engineering validation
- Demonstration of fusion technology

Experimental Facility

HL-2M EAST J-TEXT

- Steady state burning plasma
- Hybrid burning plasma
- Steady state advanced operation
- Advanced divertor, high power H&CD, diagnostics

China MCF Development Strategy

China Magnetic Confinement Fusion Development

ITER

TBB Development Plan

CFETR/DEMO

CFETR/DEMO TBB

Verify engineering feasibility of Tritium breeding and electricity generation

PFPP

PFPP TBB

Tritium self-sufficiency and electricity generation

TBB Technology

Design, material, fabrication process, safety, etc.

Experimental Facility

HL-2M EAST J-TEXT

ITER TBM

Validate technology feasibility of Tritium production and heat removal

TBB Concepts and Application

- HCCB TBB Concept (Helium Cooled Ceramic Breeder)
 - **♦ ITER HCCB TBM**
 - ◆ CFETR HCCB TBB
- WCCB TBB Concept (Water Cooled Ceramic Breeder)
 - ◆ CFETR WCCB TBB
- HCLL TBB Concept (Helium Cooled Lithium Lead)
 - ◆ CFETR DFLL TBB
- CCLL TBB Concept (Supercritical CO2 Cooled Lithium Lead)
 - ◆ CFETR COOL TBB
- Other TBB Concept

ITER HCCB TBM

Basic design features:

- 4 sub-modules+1 back plate
- U-shape breeding zone

• Main parameters:

Parameter	Design values		
Neutron wall load	0.78 MW/m ²		
Surface heat load	0.3 MW/m ²		
Structural material	CLF-1/CLAM (~1.1 t, <550 °C)		
Tritium breeder	Li ₄ SiO ₄ pebble bed (<900 °C)		
Neutron Multiplier	Be pebble bed (<650 °C)		
Coolant	He (8 MPa, 1.04 kg/s) FW (300 °C/390 °C) BU (390 °C/500 °C)		
Purge gas	He+0.1%H ₂ (0.3 MPa, 0.3 g/s, 20 °C/400 °C)		

CFETR HCCB TBB

Basic design features:

- "Banana" segment design compatible with RH
- Several blanket modules in each segment
- Blanket module consist breeding zone and shielding zone
- Blanket modules connected at shielding zone or by back plate to form segment
- Tritium breeder and neutron multiplier in alternation ranking

Material selection:

- ◆ FW armor: W / W alloy
- Structural: ODS FS
- ◆ Tritium Breeder: Li₄SiO₄ / Li₂TiO₃
- ◆ Neutron Multiplier: Be / Be alloy

Design parameters:

- ◆ Coolant: He@12MPa
- ◆ Purge gas: He(0.1%H₂)@0.3MPa

CFETR WCCB TBB

Basic design features:

- 2 inboard segments and 3 outboard segments in one sector
- ◆ 6 blanket modules in each inboard segment
- ◆ 5 blanket modules in each outboard segment
- ◆ S-shape double-wall tubes (DWT) in breeding zone with mixture of Li₂TiO₃ and Be₁₂Ti pebbles
- Stiffening plates for enhancing structure

Material selection:

- ◆ FW armor: W
- Structural material: RAFM-ODS steel
- ◆ Tritium breeder: Li₂TiO₃
- ◆ Neutron multiplier: Be₁₂Ti

Design parameters:

- Coolant: Water@15.5MPa, 285/325°C
- Purge gas: He(0.1%H₂)@0.2MPa

CFETR COOL/DFLL TBB

➤ COOL blanket (@ASIPP, @SWIP):

Basic design features:

- ◆ BZ divided by CPs and SPs
- ◆ PbLi flow along poloidal parallel channels
- ◆ FCI to reduce the MHD-induced pressure drop and decrease the temperature of steel structures

Design parameters:

- ◆ Coolant: S-CO₂@8MPa
- ◆ Tritium breeder: PbLi@1~2MPa,460/600~700°C

➤ DFLL blanket (@INEST):

Basic design features:

- Blanket divided into two parts: tritium breeding module (replaceable) and shielding block (permanent)
- BZ separated by SPs
- ☐ FCI serve as thermal and electrical insulators

Design parameters:

- □ Coolant: He@8MPa, 300/450°C
- ☐ Tritium breeder: PbLi@480/700°C or 450°C

Blanket Materials and Fabrication R&D Progress

Tritium Breeder Development

Currently focus on lithium ceramic breeder

- Melt spray method manufacturing equipment: up to small-scale, 200 kg/year.
- Other wet processes facility: up to laboratory-scale.
- New advanced tritium breeder materials: under development by universities and institutes.

Plan

- Low-cost large-scale fabrication facility (ton level);
- Lithium-6 recycling technology and advanced tritium breeder.

Melt spray method facility @SWIP

Wet method fabrication process and facilities of breeder pebbles @CAEP,SCU,USTB,SWIP, etc.

Neutron Multiplier Development

- Currently focus on Be-based neutron multiplier (@SWIP & Haibao)
 - Rotating electrode method beryllium pellet manufacturing equipment: achieve small batch production, 10 kg/batch.
 - Advanced multiplier beryllide: under studied by universities and institutes.
 - Plan:
 - ◆ Low-cost large-scale fabrication facility of beryllium and beryllide pebbles (ton level);
 - Develop materials and solutions to recycle or replace beryllium.

Fabrication facility of Be pebbles based on rotating electrode method @SWIP & HaiBao

Beryllium pebbles fabricated by REM

Topography of beryllium @SWIP

Pebble Bed Technology Development

- A series of pebble bed experiment facility has been constructed (@SWIP)
 - Covering thermo-physical, thermal mechanical, multi-physics coupling, pressure drop, etc.
 - Plan:
 - comprehensive performance of pebble bed in a multi-field environment;
 - ◆ T production and comprehensive performance under neutron irradiation.

Multiphysics coupling pebble bed performance test platform

Pebble bed gas pressure drop testing

Thermal mechanical testing with compress load

Thermophysical property testing facility

Structural Material Development

RAFM steel and advanced structural materials:

- RAFM steel (CLF-1 and CLAM): Industrial fabrication process and material database have been established, including welding database.
- Advanced materials (ODS, TMT, CNA, vanadium alloy): under development at laboratory scale.

Irradiation of Material

Focus on irradiation performance study

- Fission reactors have been used for irradiation of functional materials and structural materials.
- PIE will carried out for mechanical properties and tritium related performance

HFETR (@NPIC)

CMRR (@CAEP)

(@CIAE)

CEFR (@CIAE)

Irradiation of Material

Focus on irradiation performance study

 Several accelerator driven D-T neutron sources have been used for both functional and structural material study.

D-T neutron sources (~10¹¹s⁻¹) (@CAEP)

D-T neutron sources (~10¹²s⁻¹) (@INEST)

Blanket Fabrication Technology Development

- Blanket fabrication technology has been developed with industries supported by China TBM program and domestic project.
 - Semi-prototype HCCB TBM module (@SWIP)
 - Full size prototype inboard HCCB blanket module for CFETR (@SWIP)
 - ◆ Large size outboard WCCB blanket module for CFETR (@ASIPP)

Semi-prototype HCCB TBM module

Full size prototype inboard CFETR HCCB blanket module

Large size outboard CFETR WCCB blanket module

Blanket Test Platform Development Progress

Helium cooling (@SWIP)

& ITER Mini-CODAC

- Helium cooling experiment loop HeCEL-1 was constructed for the thermohydraulic testing of component for blanket.
- ◆ HeCEL-1 was connected with 60kW high heat flux facility and ITER Mini-CODAC.

HeCEL-1 (0.1kg/s, 8MPa, 400°C)

Hydraulic testing

High heat flux testing

Helium cooling (@SWIP)

- New helium cooling experiment loop HeCEL-3 was constructed for the thermohydraulic testing of prototype blanket of CFETR and accident experiments.
- ◆ HeCEL-3 is planned to connect with 400/800kW high heat flux facility.

HeCEL-3 (2.5kg/s, 12MPa, 550°C)

EMS-400 High Heat Flux Testing facility

Water cooling (@ASIPP)

- Thermal Hydraulic Test Platform for WCCB BLK and DIV
 - High heat load test (WCCB blanket prototype, divertor target)
 - WCCB blanket thermal fluid experiment

EBG beam

High temperature and high pressure water loop

Water loop

Pressure	15.5MPa		
Temperature	285/325°C		
Mass flow rate	≥14Kg/s		

Vacuum Vessel Dimensions

Diameter: 3m

Length: 4m

EBG

800kW, 60kV 60kW, 150kV

- Liquid metal cooling (@UCAS)
 - MaTH (Magneto-Thermo-Hydrodynamic) loop
 - Flow and heat transfer, Magneto-convective fluctuations

MHD pressure drop, Couple MHD effect of multi-channel

Mixed convection test section

- Mostly based on cooling loop for thermohydraulic testing
 - Also connect with high heat flux testing facility (@SWIP)
- The multi-physics coupling testing platform is under consideration.
 - to cover thermal load, pressure, high heat flux, mechanical load (EM load)

14 | ## 2 |

W armor / RAFM(CLF-1) FW sample and its high heat flux testing

>1000 cycles for 1MW/m²

EMS-400 High Heat Flux Testing facility (@SWIP)

5 Summary

Summary and outlook

- The technology development of tritium breeding blanket is one important part of China fusion development toward DEMO.
- Under support by domestic project and China TBM project organized by MOST, a lot of design and R&D activities related to the various blanket concepts have been implemented, also many testing facilities and platforms are constructed to support and verify the design, which will provide indispensable experience.
- Still a lot of challenges are on the way, the international collaborations offer effective way to bring our efforts together to tackle these difficulties.

Thanks for your attention!