

Selective adsorption properties of layered titanate for tritiated water

Yuki Edao¹, Yasunori Iwai¹, Hiroyoshi Mori², Nobuki Itoi², Toshiki Goto², Nobuhiro Kumada³

1. National Institutes for Quantum Science and Technology (QST)

10-15 SEPT 2023

SPAIN

GRAN CANARIA

- 2. Otsuka Chemical Co., Ltd.
- 3. Center for Crystal Science and Technology, University of Yamanashi

National Institutes for Quantum Science and Technology

1. Background

2. Experiments & Results

- 1. HTO vapor exposure
 - ✓ Comparison among different samples
 - ✓ Effect of ion among layer structure
- 2. HTO water exposure
 - ✓ Difference of HTO adsorption rate
- 3. HTO desorption
 - \checkmark Consideration of mechanism of adsorption

Separation of hydrogen isotopes

- Difficult to separate tritiated water and light water because tritiated water (HTO) is similar in properties to light water (H2O)
- Necessary to separate and reuse tritium from the viewpoint of fuel for fusion reactors and effective use in various research and development.

Techniques of separation and concentration of tritiated water (HTO)

Separation techniques exist in the field of atomic power plant (CANDU reactor) and fusion energy

- ✓ Distillation
- ✓ Electrolysis
- \checkmark Isotopic exchange

Current Issues

 To separate hydrogen isotopes from water, huge amounts of energy and cost are required for the separation of H2O and HTO, such as repeated distillation and electrolysis many times.

Background

Promising method of separation and concentration of HTO

Use of adsorbent for the process

Use of adsorbent as a packing material in the distillation process has been proposed to make the separation more efficient.

- Tritium separation efficiency has been reported to be improved in distillation systems using zeolite, a typical adsorbent
- Separation coefficient of zeolite is about 1.02 to 1.20. (1.0: No separation ability)

The development of a new adsorbent is desired to improve the tritium separation efficiency.

S. Fukada, FST 48 (2005)

Focused Material:

- \checkmark Layered titanate salt as a new adsorbent
- \checkmark The characteristic can be changed depends on the interlayer metal ions
- ✓ The titanate sodium substituted has two-step water adsorption properties (K. Makise et. al, J. Asian Ceram. Soc., 11, 170 (2023))

Purpose:

Focusing on this unique property, the selective adsorption characteristics of tritiated water on the material were investigated experimentally.

1. Background

2. Experimental & Results

- 1. HTO vapor exposure
 - Comparison among different samples
 - ✓ Effect of ion among layer structure
- 2. HTO water exposure
 - \checkmark Difference of HTO adsorption rate
- 3. HTO desorption
 - ✓ Consideration of mechanism of adsorption

Sample preparation

- **G**QST
- Several types of powder samples with composition control based on a commercial potassium titanate salt (LSS-K) were prepared.
- The layered potassium titanate (K_{0.75}Li_{0.25}Ti_{1.75}O₄) Lss-K
- The Na substitute layered titanate ($Na_{0.75}$ ($Li_{0.25}Ti_{1.75}$)O₄) Lss-Na
- To investigate the effects of interlayer metal ions, Lss-Mg and Lss-H in which were introduced Mg ions and H ions, which were known to incorporate water molecules between layers, were fabricated by the same method.
- As a comparison, zeolite (MS3A: Molecular Sieves 3A) and empty (Blank) were prepared.

Experiment 1: HTO vapor exposure

GQST

Investigation of characteristic of HTO adsorption

The static method is the best approach to measure the isotopic distribution considering the difference in adsorption rate though a long time is needed to reach isotopic equilibrium.

Experimental conditions Sample: Lss-Na, Lss-Mg, Lss-H, Lss-K, MS3A Sample weight: 5 g , 15g (for reference) HTO water: 5g HTO conc.: 0.38MBq/g Temperature: 30°C (Water bath)

<u>Procedure</u>

- 1. Dry sample at 200°C
- 2. Put the sample in the container with HTO water and leave it in water bath
- 3. Measure tritium conc. in the water by LSC
- 4. HTO in the sample was measured by the immersion method

- ① Plug equipped Erlenmeyer flask (100mL)
- ② Adsorbent sample
- ③ Temperature controlled water tank
- ④ Plug equipped test tube (11mL)
- (5) Tritiated water (5mL)

Changing in concentration ratio of HTO (C/C0) with elapsed time

- absorbent. H2O was preferentially adsorbed
- Selectively inhibit the adsorption of HTO onto the material

Result 1-2: Changing in HTO concentration

 \checkmark C/C0 has peak during the exposure period.

- \checkmark The peak time became longer with increasing the amount of the sample Lss-Na.
 - These suggest the possibility that the adsorption mechanism is key to the difference in adsorption speed between HTO and H2O

	Days	C/C0
LssNa	30	1.03 ± 0.01
LssH	30	1.00 ± 0.01
LssMg	30	0.98 ± 0.02
LssK	31	1.00 ± 0.00

Elapsed time from HTO exposure [day]

Comparison among Lss-Na, Lss-H and Lss-Mg

(Lss-K: no-taking in water molecules between layers)

- ✓ LSS-H: No change C/C0=1
- ✓ LSS-Mg: C/C0<1
 - > Interlayer ions affect adsorption properties of HTO
 - > Only Lss-Na adsorbed H2O preferentially

1. Background

2. Experimental & Results

1. HTO vapor exposure

- ✓ Comparison among different samples
- ✓ Effect of ion among layer structure

2. HTO water exposure

- ✓ Difference of HTO adsorption rate
- 3. HTO desorption
 - ✓ Consideration of mechanism of adsorption

Experiment 2: HTO water immersion

Investigation of HTO adsorption rate

To confirm the HTO adsorption rate of LSS-Na in detail the sample was directly contacted with tritiated water

Experimental conditions Sample: LssNa, 5 g HTO water: 0.38MBq/g, 10 g Temperature: RT Duration: 3, 7, 14 days

<u>Procedure</u>

- 1. LssNa was immersed in HTO water
- 2. Leave it for over 3 days at RT
- 3. Sample the clean layer of HTO water after the predetermined days
- 4. HTO concentration was measured by LSC

Result 2: HTO adsorption rate

Difference of exposure between vapor (slow) and liquid (fast)

Elapsed time from HTO exposure (day)

 \checkmark The peak time was long in vapor exposure for slow HTO contacting.

- \checkmark The peak time was short in liquid exposure for fast HTO contacting.
 - This result suggest that the adsorption mechanism is key to the difference in adsorption rate (speed) between HTO and H2O

1. Background

2. Experimental & Results

1. HTO vapor exposure

- ✓ Comparison among different samples
- ✓ Effect of ion among layer structure

2. HTO water exposure✓ Difference of HTO adsorption rate

3. HTO desorption

- \checkmark HTO distribution in the layer
- Consideration of mechanism of adsorption

3 types of water absorbed on Lss-Na

Which types of water HTO is exist in?

Investigation of HTO distribution in LssNa

Experiment of water desorption from LssNa with HTO Sample: LssNa, 5 g with HTO exposure N2 purge gas flow rate: 0.5L/min Water weight: 100ml Temp and time:

HTO:5q

Result 3: Characteristic of HTO adsorption

٠

•

✓ Easy to adsorb H_2O in adsorbent: C/C0>1, HTO water concentrated

Desorption rate is different between HTO and H2O in the process of adsorption on the first layer of LssNa

1. Background

2. Experimental & Results

- HTO vapor exposure
 - ✓ Comparison among different samples
 - ✓ Effect of ion among layer structure
- HTO water exposure
 - ✓ Difference of HTO adsorption rate
- HTO desorption
 - Consideration of mechanism of adsorption

- ✓ Titanate layered inorganic compound has two-step moisture adsorption properties depending on the interlayer metal ions.
- ✓ LssNa adsorbed H2O preferentially. (the opposite of common knowledge which HTO preferentially adsorbs in adsorbent)
- ✓ As for layered titanates, only Na-substituted titanates preferentially adsorb light water better than tritiated water.
- \checkmark H2O is easily taken up by the first layer.
- ✓ The mechanism of tritiated water separation and concentration is due to the difference in adsorption rates

Future prospect of the material

- ✓ Development of tritium contamination prevention technology
- ✓ Development for adsorbent supported tritiated water separation technology
 - > Necessary to mold the layered titanate salt so that it can be actually used.