

10-15 SEPT 2023 AUDITORIO ALFREDO KRALIS LAS PALMAS DE GRAN CANARIA, SPAIN

Effect of Recrystallization on Fatigue Crack Growth Characteristics of a Pure Tungsten

Sept. 10th - 15th (Date), 2023

Taejeong An, Byeong Seo Kong, Hyoung Chan Kim, Changheui Jang*

E-mail: <u>chjang@kaist.ac.kr</u>

Nuclear & High Temperature Materials Laboratory (Nu_HTML) Korea Advanced Institute of Science and Technology (KAIST)

- **II.** Research Objective
- **III. Experimental**
- **IV. Results**
- V. Summary & Further work

Introduction – PFM in fusion reactor

✓ Plasma facing material (PFM) in fusion reactors

- Ø Characteristics of tungsten considered as PFM
 - High melting point, high thermal conductivity, and low tritium retention [1]
 - Inherent low fracture toughness, high DBTT and low Recrystallization temperature

ø Thermal fatigue of PFM armor under high-heat flux (HHF)

- Tungsten(W) exposed to HHF in-service reactor [2]
- PFM exhibits high temperature gradient due to HHF cycles and coolant pipe

• Fatigue crack generated by thermal fatigue [3]

A schematic representing the temperature history of tungsten armor under HHF cycles [2]

A schematic of the deep crack mechanism of tungsten armor under HHF cycles [3]

Introduction – Recrystallization

v Plasma facing material (PFM) in fusion reactors

- Ø Recrystallization effect of heat flux facing surface of PFM
 - H.C. Kim et al., Fusion Eng. Des. 170 (2021) 112530
 - ü Apply HHF test at 10 MW/m² up to 5,000 cycles, recrystallization phenomena is observed [4]
 - ü Decreasing yield strength due to recrystallization may promote fatigue crack [5]
 - G. Pintsuk et al., Fusion Eng. Des. 98-99 (2015) 1384-1388
 - ü Apply HHF test at 20 MW/m² up to 1,000 cycles, macro-crack is observed [4]
 - ü Deep cracks propage in brittle mode to the W/Cu interface

Evaluation of fatigue crack growth on tungsten is crucial

Microstructure profile of the HHF tested plansee and ALMT W in the surface region [4] Macro-crack image created on tungsten mock-up and surface exposured to HHF [6]

Evaluation of Recrystallization Effect on Fatigue Crack Growth Characteristics of a Pure Tungsten

Evaluation of J-integral Property

considering strain-rate and Rx

EBSD analyses for investigating

evolution of microstructure

Nuclear & High Temperature Materials Lab.

Ø Evaluation of High Temperature Mechanical Properties of Pure Tungsten for Integrity of ITER Divertor

Experimental

Test Material : A.L.M.T Tungsten (W)

Ø IQ + IPF map

Sub-grain structure within large grains (TMP)

ø Grain Misorientation map

- LAGB Fraction (~ 80%)
- HAGB Fraction (~ 20%)

ø KAM map

ΚΔΙSΤ

Deformation energy is homogeneously distributed

Test Specimen & Facility

- ø Smaller disc compact (DCT) specimen
 - Specimen geometry : a₀ = 2.7 mm, b₀ = 3.3 mm, B = 1.5 mm
 - ü Complied with general proportions of ASTM-E399 & E1820
 - Notch direction perpendicular to the longitudinal direction
 - Notch root radius of the machined notch : ~ 70 μm
- ø Test facility set-up in Ar environment
 - To prevent excessive oxidation in high temperature
 - Ar gas was injected into the quartz (Flow rate: 2K cc / min.)

The EBSD results of A.L.M.T tungsten; (a) IQ, (b) IPF, (c) GB maps, and (d) KAM

The Schematics of specimen and facility [1] Nuclear & High Temperature Materials Lab.

Experimental

Fatigue Crack Growth Rate Test Procedure

- Refer to simulation data assuming crack [2,3] Ø
 - $\Delta K = K_{max} K_{min} = \sim 20 MPam^{1/2}, R = 0.1, (\dot{\epsilon} = 3.0 \times 10^{-2} \text{ s}^{-1})$
 - Perform K-increasing FCGR test (P_{max}=250 N)
- Fatigue pre-crack process at elevated temperature Ø
 - Considering inherent brittleness (At higher than DBTT)
 - Introducing pre-crack in Ar environment through tensile cyclic loading
 - ü Sharp pre-crack without oxides (Notch root radius~0.2 µm)

Calculating the da/dN and ΔK values Ø

- Measuring crack length using SEM (Difficulty using DCPD and COD)
- Plot the graph after calculating the da/dN and $\Delta k_{\Delta ver}$ using parameters

The morphology of fatigue pre-cracks

KVI2.

		-	~
100 µm	. 100 µm	200 µm	20

crack length (mm)	Crack length + notch	α = a/W (>0.2 valid)	Geometry constant	da/dN [m]	da/dN [mm]	del K (Average)
0.21	2.91	0.49	9.71	6E-06	6E-09	. 18.81
0.24	2.94	0.49	9.86	3.1E-05	3.1E-08	19.09
0.33	3.03	0.51	10.36	9.3E-05	9.3E-08	20.07
0.45	3.15	0.53	11.07	1.2E-04	1.2E-07	21.44
0.62	3.32	0.55	12.18	1.7E-04	1.7E-07	23.58
0.89	3.59	0.60	14.42	2.7E-04	2.72E-07	27.92

Procedure of calculating the da/dN and $\Delta K_{Aver.}$

J-integral values at the tip of a crack initiated at the armor surface [2,3]

Results – Recrystallization condition

Recrystallization condition of ALMT W

- **ø** Heat treatment trials for finding recrystallization condition
- ø EBSD results of ALMT W (1300 , 3 h)
 - Grain Orientation Spread (0°~2°) : Fully recrystallized W

Procedure of calculating the da/dN and ΔK

Results – Tensile results

Tensile test results of pure tungsten

ø Tensile results of As-Received W

- Strength is decreased with increasing temperature
- Brittle behavior is observed below 300

Ø Tensile results of Recrystallized W

- As temperature is increased, strength is decreased and elongation is significantly increased
- Brittle behavior is observed below 500

Using tensile results for evaluation of J-integral property and FCGR characteristics

<ALMT W>

<RXed ALMT W>

Results – **FCGR** characteristics

FCGR Test results

Plot the da/dN- Δ K curve using measuring crack length Ø

- FCGR tests are conducted at elevated temperatures
 - ü At 400 600
 - **ü** As temperature is increased, FCGR characteristic is decreased
 - **ü** All Recrystallized ALMT W is brittly fractured

Calculating the parameters of Paris's law Ø

These constants were determined by curve fitting

Results – **FCGR** characteristics

v Fractography of FCGRed Test specimen

ø As-Received ALMT W

- Fatigue crack growth regions were observed
- Calculate K_{max} value using Fatigue crack growth region of As-Received ALMT W

Ø Recrystallized ALMT W

• Intergranular failure without fatigue crack growth

<Estimated value>

SEM fractography of as-received and recrystallized ALMT W

Results - Effect of Strain-rate in J-integral property

✓ Effect of Strain-rate in J-integral property

- **ø** Static condition (1.33 x 10⁻⁴ s⁻¹)
 - Similar J-integral properties

Ø Quasi-dynamic condition (5.30 x 10⁻² s⁻¹)

J-integral property of Recrystallized W is significantly decreased

J-integral curve at 600

Results – Effect of Temperature in J-integral property

v Effect of Temperature in J-integral property (High strain rate)

ø High strain rate condition (5.30 x 10⁻² s⁻¹)

- 600
 - ü J_Q=107.8 kJ/m²
- 500
 - ü J_Q=63.6 kJ/m²
- 400
 - ü J_Q=48.9 kJ/m²

As temperature is decreased, J-integral property is decreased

Results – Effect of Temperature FCGR chracteristics

Effect of Temperature in FCGR chracteristics

Considering the starting point of regime B Ø

Ø Referring the da/dN – ΔK graph

 \ddot{u} 600 (~ 334 µm), 500 (~ 494 µm), and 400 (~ 710 µm)

EBSD results of FCGRed specimens Ø

Loading axis

Propagation

- Compared to graph, starting points of regime B are similar
- Dynamic recrystallization is observed through EBSD result
 - **ü** As temperature is increased, DRX is increased
 - **ü** As temperature is decreased, starting point of regime B moves away

da/dN-ΔK graph of ALMT W

10-15 SEPT 2023 AUDITORIO ALEREDO KRALIS LAS PALMAS DE GRAN CANARIA, SPAIN

Energy for Earth !!

This research was supported by R&D Program of "Project No. IN2308-2" through the Korea Institute of Fusion Energy(KFE) funded by the Government funds, Republic of Korea.

