

Development of a liquid metal divertor solution for DEMO

T.W. Morgan (on behalf of the PRD-LMD team)

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

PRD-LMD team

1. J.G.A. Scholte, F. Romano the Magnum team

- S.S. Herashchenko, V.A. Makhlai, I.E. Garkusha, Yu.V. Petrov, N.N. Aksenov, O.V. Byrka, V.V. Cheboratev, N.V. Kulik, V.V. Staltsov, P.B. Shevchuk
- 3. R. Dejarnac, J. Horacek, F. Jaulmes, J. Cecrdle
- 4. I. Kaldre, L. Buligins, I. Grants, O. Mikanovskis, K. Kravalis
- 5. I.Ivanova-Stanik, V. Pericoli Ridolfini
- 6. D. Horsley, F. Chaudry, T. Barrett, S. Desai, J. Freemantle, E. Organ
- 7. G. F. Nallo, E. Bray, C. Marchetto, F. Subba, T. Luda di Cortemiglia, C. Angioni, D. Fajardo, E. Fable, R. Zanino
- 8. E. Oyarzabal, F. Tabares, D. Alegre, A. de Castro, M. Liniers, D. Tafalla, E. de la Cal, I. Voldimer and the OLMAT team
- 9. L. Bana, D. Vavassori, V. Russo, M. Bugatti, D. Dellasega, M. Passoni
- 10. M. lafrati, S. Roccella, G. Mazzitelli
- 11. K. Krieger, R. Dux, A. Manhard, M. Balden, V. Rohde, D. Brida, S. Elgeti, M. Faitsch, A. Herrmann, K. Hunger, P. de Marne

Max-Planck-Institut für Plasmaphysik

Why LMDs for DEMO?

Challenge for PFCs: avoiding component failure in DEMO

Importance of reliability for heat exhaust solution for fusion economic viability

Need to avoid reaching component failure

- Loss of coolant accident (LOCA)
- Excessive erosion into core
- Too damaged to risk continued use

Any large unmitigated ELM or disruption could lead to failure (melting, LOCA)

Planned replacement will require >6 months

PFC failure has high risk and impact

Challenges for DEMO divertor design

Solid PFC

Strong limit on P_{sep} (dictates design)

delicate radiation balance

- Need extremely good (active) control:
 - <1 unmitigated disruption? ELM free operation(?)
- Erosion gives one of upper lifetime limits divertor and neutrons degrade properties over time

requires replacement/2fpy

Potential advantages liquid metals

Liquid PFC

 Higher P_{sep} possible due to large power removal in SOL [Goldston Phys. Scr 2016]

More robust scenario?

 Negative feedback from evaporation; vapour shielding protection of substrate + replenishment [Rindt Nucl. Fusion (2018)]

ELMs allowed?

De-risk operation as disruptions survivable?

• **Replenishment** removes erosion concern and neutrons **limited effect** on LM and W substrate performance [*Rindt Fusion Eng. Des. (2021); Rindt Nucl. Fusion 2019*]

Longer divertor lifetime?

Power density limits in principle higher for LMs

Capillary porous structures (CPSs) create conduction based stabilized PFCs

Evtikhin JNM (1999)

- Replace solid surface with liquid
- MHD forces (jxB) destabilize liquids in tokamaks (droplets)
- Use surface tension/capillary refilling
- Replace top region with this combined material

Design criteria overview: performance

Design requirement	Sn	Li
Must tolerate 10 MW m ⁻² in nominal operation	×	≭ (√)
17-21 MW m ⁻² during slow transients 3-10 s	\checkmark	≭ (✓)
Heat load < 5 MW m ⁻² outside strike points	\checkmark	\checkmark
Withstand ≥1 disruption (80 GW m ⁻² 4 ms)	\checkmark	\checkmark
Coolant 40% safety factor CHF	\checkmark	✓
Tritium inventory in-vessel <730g	×	×
Evaporation must not significantly reduce fusion output during normal operation	✓ 1250 °C	× (√) 690 °C

Cannot simultaneously satisfy high heat loads and low evaporation rate for Li

Tritium inventory control with Li requires continual active removal

Design criteria overview: compatibility

Design requirement	Sn	Li
High recycling divertor	✓	×
Activation must be kept to limits for intermediate level waste	\checkmark	\checkmark
Lifetime 2 fpy	✓	\checkmark
70 cm high vertical target	\checkmark	\checkmark
Need to be able to re-wet in-situ	✓	✓
Withstand atmosphere for 2 months during maintenance	✓	×
Withstand 200 °C bake during startup	✓	\checkmark
No major design changes to in-vessel components, diagnostics, 1 st wall	✓	×

Li would act as low recycling surface and result in significant changes to the operational mode of DEMO

Li better suited for e.g. vapour box concept and is not further considered here

Sn chosen as candidate LM for this application

1.vv. worgan | 15FIVT | September 2023 | Page 9

Development questions

What steady-state power handling can be achieved?

Conceptual design (ENEA)

CuCrZr EUROFER

CPS

Tin

Water hydraulic parameters $T_{bulk} = 140^{\circ}C$ p= 5 MPa v= 12m/s

Roccella Journal of Fusion Energy (2020)

PFU thermal analysis (ENEA)

In both cases evaporation is negligible because CPS surface temperature is below 1000 °C

Roccella Journal of Fusion Energy (2020)

Can it be compatible with the core scenario?

SOLPS-ITER modelling with self-consistent PWI for Sn (PoLiTo)

SOLPS-ITER modelling with additional Sn processes from ADAS database

2D FE model for heat conduction in each section

- Specified heat transfer coefficient and coolant temperature
- Imposed heat flux from SOLPS-ITER on PFS
- Consider evaporation, thermal sputtering
- Temperature-dependent properties

Simplified treatment of LM-filled CPS layer on top of substrate:

 Solid layer with averaged thermal properties evaluated by law of mixtures

Modelling shows with Ar seeding core Sn concentration low and power to target acceptable (PoLiTo)

Addition of Sn reduces heat load, but Ar addition needed to radiate in SOL and lower core concentration level

With increasing Ar evaporation suppressed and Ar becomes dominant radiator in SOL

ASTRA results – Sn (PoLiTo)

DEMO scenario from SOLPS-ITER input to ASTRA code

Implications for operation

These results imply a self-stabilizing mechanism

For loss of detachment get temperature increase to point where Sn erosion will increase radiation. [Decrease in heat flux will lower Sn erosion and increase power to divertor surface]

Lead to automatic protection of divertor component (no damage)?

Divertor also may survive disruptions: less stringent limits for disruption mitigation? Same for ELMs?

Can it better handle transient loads?

TOKES modelling used to investigate Sn CPS protection for divertor during disruptions (KIT)

Courtesy Serguey Pestchanyi

TOKES modelling also shows Sn protection for divertor during disruptions (KIT)

Courtesy Serguey Pestchanyi

Experiments on QSPA Kh-50 explore how Sn-filled CPS performs under disruption-like loading (KIPT)

Test conditions		
Energy density	up to 3 MJ/m ²	
Number of pulses	100	
Base temperature	~ 300 °C , ~ RT	

QSPA performance characteristics

Energy density max	30 MJ/m ²
Pulse duration	0.25 ms
Pressure	3-18 bar
Electron density	0.2-5×10 ²² m ⁻³
B ₀	0.54 T
Plasma diameter	15 cm

Makhlai Phys. Scr. (2021)

3D printed W CPS cylindrical samples of 25 mm in diameter and 17 mm in height were provided by Peter Rindt, DIFFER.

Rindt NF (2019)

Comparison between Sn-CPS and W shows survival of CPS vs melting/cracking W (KIPT)

How to achieve a practical implementation?

Development path for a liquid metal divertor

Stepping stone: COMPASS-U (IPP.CR)

- Key near term device (late 2020s)
- High-field high current tokamak
- High density high heat flux divertor
- Inertially cooled PFCs (discharge 3s)
- Hot walls (300-500 °C)
- Divertor flexibility (install full toroidal ring)

Courtesy R. Dejarnac

Activities towards implementation of development path

Activity

AUG experiment on Sn-CPS mock-up (DIFFER)

Magnum-PSI testing s.s. plasma loading (DIFFER)

OLMAT HHF loading (CIEMAT)

MHD flow modelling in CPS (UL)

COREDIV modelling of performance in COMPASS-U (IPPLM)

Corrosion barrier development (ENEA PoLiMo)

Spectroscopic data thermal sputtering Sn (CIEMAT)

Pre-conceptual design COMPASS test module (CCFE/IPP.CR)

Development optimized CPS design and prototype (DIFFER/ENEA/CCFE)

Development of new LM-dedicated linear plasma device LiMeS-PSI (DIFFER)

ISFNT | September 2023 | Page 27

TZM gates

Pre-chamber Translation/rotation manipulator

Target

Example: corrosion barrier production (PoLiMo)

Sn corrosive for CuCrZr- may require protective barrier layer

W coatings prepared by HiPIMS and exposed to stagnant Sn droplet at 400 °C up to 5 hours Initial studies show light element doped amorphous W structure most promising

- CuCrZr

Conclusions

Sn-based CPS divertor could provide resilient alternative for DEMO

Full conceptual designs indicate power handling up to 20 MW m⁻² while strongly limiting Sn evaporation

With Ar seeding operational scenarios exist over a wide range of pedestal density compatible with core performance requirements Natural negative feedback mechanism to stay in regime

Modelling and experiments show survival against unmitigated disruption loads

Development of prototypes underway and new devices coming online to develop LMDs to next level

Material options of Li, Sn both have strengths and weaknesses

Choices once cost, availability, activation, material compatibility etc. taken into account

Sn-CPS based design most promising and mature technology

PFU thermal analysis (ENEA)

Roccella Journal of Fusion Energy (2020)

Tin is always liquid above 5 MW m⁻²

Mock-ups being prepared for HHF testing (ENEA/DIFFER)

DIFFER

LiMeS-lab being constructed as an intermediate step to full development of LMDs (DIFFER)

LiMeS-lab is a key stepping stone on this route

What is LiMeS-lab? (DIFFER)

T.W. Morgan | ISFNT | September 2023 | Page 35

Approach Sn droplet production

Screening testing using Magnum-PSI (high flux H plasma)

Pre-treatment by low flux plasma to remove oxides and improve wetting on W ENEA felt (showed promising performance) Sintered surface 3D design Commercially sintered W 3D printed Mo sample Sn-Li sample

Surround targets with witness plates \rightarrow RBS \rightarrow determine Sn on plates Fast image camera with Sn filter \rightarrow see droplets Optical emission spectroscopy \rightarrow observe Sn emission evolution Where possible embedded TCs, otherwise pyro IR \rightarrow surface temperature

2023

OLMAT facility designed for HHF neutral beam testing of LM targets (CIEMAT)

To TJ-II

Performance:

- Maximum injected power: 705 $kW \rightarrow 50MW/m2$
- Maximum pulse length: 150 ms (at medium power)
- Minimum pulse repetition rate: every 30 s.

Long term: testing in COMPASS-U (IPPCR) and I-DTT (ENEA)

COMPASS-U (from 2025)

High field device Closed high density divertor High PB/R Hot wall operation (300 °C) Flexible exchange of divertor possible I-DTT (from 2027)

ITER-like divertor powers DEMO-relevant PB/R Divertor module exchange possible

Conclusions 1/2

- LMDs are a promising alternative to W-based PFCs
 - Resilience to off-normal events
 - Greater lifetime
- Sn preferred to Li
 - T retention
 - Safety
 - Power handling
- Full conceptual designs indicate power handling up to 20 MW m⁻² while strongly limiting Sn evaporation

Conclusions 2/2

- With Ar seeding operational scenarios exist over a wide range of pedestal density compatible with core performance requirements
 - Natural negative feedback mechanism to stay in regime
- Modelling and experiments show survival against unmitigated disruption loads
- Testing in AUG shows good survival but that improvements to understanding/design of CPS structures required
- Development of prototypes underway and new devices coming online to develop LMDs to next level

Going from ITER to DEMO involves large jumps in several parameters

Courtesy G. Matthews

Property	ITER	DEMO ¹
Pulse length	~400 s	~7200 s
Duty cycle	<2%	60-70%
Neutron load	0.05 dpa/yr	1-9 dpa/yr
Exhaust power	150 MW	500 MW
Divertor area	~4 m ²	~6 m ²
Radiated power	80%	97%

Resilience to **neutrons** and **power excursions** on **long timescales** becomes more important

This is where **LM strengths** can play an important role compared to conventional solid divertor materials

¹Wenninger NF (2017) T.W. Morgan | ISFNT | September 2023 | Page 40

Several Sn-CPS based pre-conceptual designs have been developed (DIFFER/ENEA/CCFE)

1. ENEA

2. DIFFER

3. CCFE

ASTRA simulation strategy - overview

ASTRA

Generic DEMO scenario [Siccinio et al., *FED* 2020]

Initial conditions

- Safety factor, T_e, T_i, n_e profiles
- Auxiliary power

Boundary conditions

Outputs of SOLPS-ITER

• $T_e, T_i, n_e, n_i, n_{D0}$

Γ of impurities
Interface set at separatrix (*)

(*) treatment of pedestal subject to improvements

$$\Gamma = -D \frac{\partial n}{\partial \rho} + V \cdot n \qquad \qquad q = \mathbf{X} \frac{\partial T}{\partial \rho} \cdot n$$

ASTRA computes the **main plasma transport equations**, evolving temperatures, densities and current, starting from initial and boundary conditions.

TGLF-NCLASS

The two codes implemented in ASTRA, evaluate turbulent and neoclassical transport coefficients, starting from the main plasma profiles

STRAHL

Computes the **impurity** density profile and the radiated power

ASTRA simulation setup

Starting from database of SOLPS-ITER simulations [G.F. Nallo et al., Nucl. Fusion (2022)], consider one mitigated case and one unmitigated case for both Li and Sn (see figure)

- 5

- More detailed overview on ASTRA setup:
 - B, I and $q(\rho)$ consistent with SOLPS-ITER simulations (EU-DEMO 2017 [5])
 - Boundary conditions from SOLPS-ITER imposed at separatrix ($\rho = 1$)
 - Profiles within pedestal (0.85 < ρ < 1) are not evolved
 - TGLF for turbulent transport includes TEM + ITG [6], NCLASS for neoclassical [7]
 - ASTRA evolved with one impurity (Ar neglected)
 - No resolution of individual charge states

G. F. Nallo | WPPRD-I MD update for Morgan's ISENT oral presentation | 31 August

Development path for a liquid metal divertor

H atom/plasma flux can lead to Sn droplet formation. Can this be suppressed?

T.W. Morgan | IPP Seminar June 2023

Design of the 3D-printed liquid tin module (LTM)

Design criteria:

- 1. Fit on the probe carrier
- 2. Maximum 2g Sn
- 3. Sn liquid start discharge

3D printing:

- Freedom design
- CPS attached to bulk
- Sintering small pore size (~50µm)

Pre-testing in GLADIS

- Thermal parameters validated vs FEM
- Limited Sn droplet ejection observed

Sintered CPS pore structure

CPS location, approach and diagnostics in ASDEX Upgrade

CPS mounted on divertor manipulator

- Flush-mounted insert into TZM tile
- Outer divertor vertical target
- Strikepoint moved down for fixed time

Local Sn gross erosion

• VIS spectroscopy lines of sight

Temperature measurement

- 2 thermocouples inside CPS base block
- MWIR and SWIR cameras

Sn concentration in plasma core

- VUV spectrometer (SPRED)
- Main chamber bolometers

Evolution of the CPS during exposure: Before plasma exposure

Evolution of the CPS during exposure: After 2nd L-mode shot

Evolution of the CPS during exposure: After 1st H-mode shot

Evolution of the CPS during exposure: After 7th H-mode shot

T.W. Morgan | IPP Seminar June 2023

Strong Sn source observed when strike-line is on CPS

Divertor spectroscopy shows strong Sn I emission line (380.1 nm) once strike line is moved onto the CPS in H-mode

 <u>Rough</u> estimate of Sn gross erosion based on S/XB factor by Cremona et al.

A. Cremona et al, Nucl. Mater. Energy 17 (2018) 253-258

□ Divertor plasma hotter and denser than in Ref.!

HeatLMD model underestimates Sn erosion

- Model considers sputtering & evaporation

 Thermal sputtering expected to dominate
- Discrepancy to experiment could be explained by Sn droplet emission

.

Sn core contamination beyond acceptable levels

Total radiated power ~50% higher if strike line on CPS in H-mode

Using STRAHL model:

R. Dux (2006): STRAHL User Manual, Tech. Rep 10/30, IPP, Garching

- Estimate core Sn concentration $c_{Sn} = \frac{n_{Sn}}{n_e}$ from VUV spectroscopy
- CPS width was only ~1/650 of total divertor circumference!

*based on: T. Pütterich et al, Nucl. Fusion **59** (2019) 056013 (assuming ρ^* = 7.5)

Causes of droplet production and consequences

Droplet production source

- Leakage from open edge of CPS found
- Many small droplets found downstream
- Large splash ~0.5 m away found during scheduled opening

Causes of droplet production:

- Free surface Sn (leakage)
- Too large pore size?
- Poor wetting (oxides from air on bare W)?

Sector 1.3a tile post-opening

TZM tile post-experiment

Conclusions for Sn use in DEMO

Control of Sn will be critical

- No free surface Sn allowed
- Likely need to reduce pore size
- Understanding and control of wetting vital

Other experiments indicate this is possible

More technology development required

to demonstrate viability at lab/prototype scale before it could be considered for DEMO use

Summary of PlaQ Sn experiments

Nano-PSI exposure of CPS and free surface Sn

