

- 1. Mitigation ELMs by fast strike point sweeping \rightarrow 3-5x is achievable on EU DEMO
- 1. Liquid Li/Sn divertor survives steady & transients by evaporating ... which will cool plasma
- 1. Why must PFC survive $q_{\perp} >> 10 \text{ MW}/\text{m}^2$
- 1. Conceptual experiment of PFC surviving ~60 MW/m²

EXAMPLES OF PLASMA PHYSICS ASCR Fast divertor strike point sweeping

- Tungsten melts at 0.7 MJ/m² ^[J. Coenen, NF 2015], cracks at 0.4
- Multiply known ELM mitigation techniques (RMP, impurity seeding) with our new engineering concept:
- Fast sweep the strike point spreading the power within the ELM (or QCE filaments) space-time scales

EU DEMO geometry

Electrical insulation may be tricky at 2 dpa/year [J.H. You, *FED* 2017]

<u>Horacek, J. Fusion Eng. Des. **123**</u> (2017) 646–649

Dynamic simulations of 3D magnetic field

COMSOL:

- 3D B-field of the double swept coil
- inside an AC magnetic conductor
- 0.1 mm vibrations due to $I_{sweep} x B_{tor}$

Matlab: 3D tracking from midplane to strike point

- EFIT of COMPASS plasma (rescaled to DEMO
- passing through 54 C-coils

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

Requirements for fast sweeping

scientific reports (2022) 12:17013

Check for updates

E

OPEN Novel concept suppressing plasma heat pulses in a tokamak by fast divertor sweeping

J. Horacek^{1,22}, S. Lukes², J. Adamek¹, J. Havlicek¹, S. Entler¹, J. Seidl¹, J. Cavalier¹, J. Cikhardt^{1,3} & V. Sedmidubsky⁴

Study outputs			
Voltage U_0 amplitude	±18	± 120	kV
Optimal coil number of turns	63	100	
λ_{swp} swept strike point amplitude	±6	±16	cm
CES parasitic inductance L _{CES}	70	25	nH
the circuit parasitic resistance $R_{\text{eff}} = R_{\text{IGBT}} + R_{\text{capacitor}} + R_{coil}$	11	25	mΩ
Capacity $C_{\text{CES}} + C_{\text{cable}}$	105	23	μF
$L = L_{capacitor} + L_{coil} + L_{cable} + L_{IGBT}$	0.14	0.3	mH
Resonant Sweep frequency $f_{swp} = \frac{U_0}{2\pi \cdot L \cdot I_0} = (2\pi \sqrt{LC})^{-1}$	1.3	1.9	kHz
$2N \text{ coils Ohmic losses} E_{\Omega/\text{ELM}}^{\text{tot}} = \frac{1}{2} R_{\text{eff}} I_{\text{coil}}^2 \tau_{\text{ELM}} = E_{\text{eddy}} + E_{\text{circuit}}^{\text{RLC}}$	0.22	(2.21)	MJ
AC Current I _{coil} amplitude	±16	±33	kA
Coil and Cable D _{Litz} diameter	6	5	mm
Copper weight of 1 coil + cable	80	60	kg
Relative energy dissipation within 1 ELM $\frac{E_{\Omega/\text{ELM}}^{\text{tot}}}{E}$	0.24	0.25	
The predicted surface temperature suppression factor by the fast sweeping during an ELM $F_{\rm STS}$	3.1	5.1	

More effective on bigger tokamaks because

- Λ_{a} doesn't scale with R_{0}
- there's much more space
 - under divertor target for the coil
 - for divertor leg to bend

Feasible for EU DEMO and worth for ELM suppression by 3-5x. Needs further investigation, especially

- EU DEMO machine integration
- Experimental verification Y. Zhang, Nucl. Fusion 63 (2023) 086006
 - EAST tokamak installed poloidal divertor coil similar to Horacek Fus.Eng.Des. 123, 646–649 (2017)
 - o swept with 10-100 Hz w/o ELMs
 - ELMs planned for 2023

1. Suppressing ELMs by fast strike point sweeping \rightarrow suppression 3-5x is achievable on EU DEMO

- Liquid Li/Sn divertor survives steady & transients by evaporating ... which will cool plasma
- 1. Why must PFC survive $q_{\perp} >> 10 \text{ MW/m}^2$
- 1. Conceptual experiment of PFC surviving ~60 MW/m²

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

LMD on tokamak COMPASS

P6A5: <u>Horacek@ipp.cas.cz</u> Innovative concepts for extreme heat load tokamak divertor

- 1. Li: part of surface $\underline{oxidized}$ \rightarrow droplets sliding off the edge. Li₂O sputtered out \rightarrow CPS mesh <u>melted</u> :-(
- LiSn alloy performed excellently under q_⊥=12-15 MW/m^{2 world record} ^{in tokamak} ELMy (15 kJ/m²) H-mode
 - CPS not damaged :-)
 - even after VDE disruption
 - Plasma not affected
 - No droplets splashing
 - Observed release of Li, not Sn

P.Veis, Nuc. Mat. Energy 25 (2020) 100809

R. Dejarnac, Nuc. Mat. Energy 25 (2020) 100801

Survival of disruption VDE

LMD **survived** major disruption

J. Horacek^{a,*}, R. Dejarnac^a, J. Cecrdle^b, D. Tskhakaya^a, A. Vertkov^h, J. Cavalier^a, P. Vondracek^a, M. Jerab^a, P. Barton^a, G. van Oost^{c, f,g}, M. Hron^a, V. Weinzettl^a, D. Sestak^a, S. Lukes^b, J. Adamek^a, A. Prishvitsin^c, M. Iafratti^e, Y. Gasparyan^c, Y. Vasina^c, D. Naydenkova^a, J. Seidl^a, E. Gauthier^d, G. Mazzitelli^e, M. Komm^a, J. Gerardin^a, J. Varju^a, M. Tomes^a, S. Entler^a, J. Hromadka^a, R. Panek^a

900

800

700

600

500

420

430

OD.

450

440

430

440

450

420

15 kJ/m² ELMs reveal strong surface thermal insulation of the CPS: 1 MW/m²/K. If absent, dT~3K! Why? Is it a general CPS property? mystery!

LMD program on COMPASS(-U) to sustain extreme heat load density

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

J Horacek¹^(b), J Cecrdle^{2,*}^(b), D Tskhakaya¹^(b), R Dejarnac¹^(b), J Schwartz³^(b), M Komm¹^(b), J Cavalier¹^(b), J Adamek¹^(b), S Lukes^{2,*}^(b), V Veselovsky¹, J Varju¹^(b), P Barton¹^(b), S Entler¹^(b), Y Gasparyan⁴^(b), E Gauthier⁵, J Gerardin¹^(b), J Hromadka¹^(b), M Hron¹^(b), M Iafrati⁶^(b), M Imrisek¹^(b), M Jerab¹^(b), K Kovarik¹^(b), G Mazzitelli⁶, D Naydenkova¹^(b), G Van Oost^{4,7,8}^(b), R Panek¹^(b), A Prishvitsin⁴, J Seidl¹^(b), D Sestak¹^(b), M Tomes¹^(b), Y Vasina⁴, A Vertkov⁹^(b), P Vondracek¹^(b) and V Weinzettl¹^(b)

Predictive modelling of liquid metal divertor: from COMPASS tokamak towards Upgrade. *Physica Scripta* **96** (2021) 124013 Will be published

liquid metal prompt redeposition	unit	Li R=0	Li R=0	LiSn <i>R=0</i>	Sn <i>R=0.9</i>	LiSn <i>R=0</i>	Sn <i>R=0.9</i>		LiSn <i>R=0</i>	LiSn <i>R=0</i>	Sn <i>R=0.9</i>		
plasma mode		L- mode ³¹⁰⁰	R ₀ =0.9 m, medium power H-mode ^{#3210} , 2.5 T, 0.8 MA, P_{in} = 2 _{NBI} + 0.6 ₀ MW										
divertor target	Set-up		At manipulator with T _{back} =250°C, hot spot only few c					full toroidal divertor 1000 cm ² at 3° from Fiesta					
Cooling			1 mm CPS on 4 mm Copper cooling pipe			¹ ⁄ ₄ mm CPS on 2 mm Copper cooling pipe		1 mm CPS on 4 mm Copper cooling pipe		inertial heat sink into 2 cm W in 2 s			
Equilibrium temperature	°C	700	900 850 ELMs	1050 1000 ELM	1900 2000 ELMs	1000 950 ELMs	1700 2000 ELMs	700		700 800		1350	
Plasma heat flux q_{\perp}		+36	attached DEMO-like			: +160		+16					
Copper conduction + absorption in water	Inter-ELM Energy fluxes	-18	-15	-25	-45	-70	-130	-16	-8	-3	-14		
Sputtering	MW/m ²	-15	-45	-15	-15	-30	-15	0-1	-4	-5	-1		
Evaporation		-3	-100	-120	-100	-60	-15	0-1	-4	-8	-1		
released	atoms	lithium		tin	lithium	tin		lithium	lithium	tin			
Sputtered + Vaporized	grams / sec atoms / sec	0.04 0.4 3x10 ²¹ 3x10 ²²		0.006 3x10 ¹⁹	0.2 1.5x10 ²²	0.0006 3x10 ¹⁸		1.3 10 ²³	4 3x10 ²³	0.006 3x10 ¹⁹			
I.I. Stanik: CoreDiv plasma2023.ipplm.pl Warsaw	global plasma conse- quences	n/n= 2 %	core concer →dilution of fr P _{rad} ^{Li} ~	ntration = 9 % usion reactions 0.9 MW	core cntr 10 ⁻³ f _{rad} =0.8, Z _{eff} =1.5? P _{rad} ^{Sn} ~5 MW →radiative collapse!	core cntr 8% f _{rad} =0.5, Z _{eff} =1.8 P _{rad} ^{Li} ~ 0.5 MW	Core cntr 10-4acceptablyfrad=0.5, Zeff=1.45, Prad Sn=0.4 MWstrong		radiative collapse!	core cntr 10 ⁻³ f _{rad} =0.8, Z _{eff} =1.5? P _{rad} ^{Sn} ~5 MW →radiative collapse!			

Baseline prediction for ITER

- 1. Suppressing ELMs by fast strike point sweeping \rightarrow suppression 3-5x is achievable on EU DEMO
- Liquid Li/Sn divertor survives steady & transients by evaporating ... which will cool plasma :-(

1. Why must PFC survive $q_{\perp} >>10 \text{ MW/m}^2$

1. Conceptual experiment of PFC surviving ~60 MW/m² \rightarrow either liquid tin or W are feasible

Pessimistic turbulence & empirical predictions

EU DEMO: 4x higher q_{\perp} than ITER

Spherical tokamaks \rightarrow small $B^2R_0 \rightarrow$ no enhanced turbulence as in XGC1

• SPARC: q_~350 MW/m² A.Q.Kuang <u>Plasma Phys. (2020)</u> assuming f_{rad}=0.5

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

• STEP: $q_{2}\sim 480 \text{ MW/m}^{2}$ S.L. Newton IAEA M 2022 at inner target with $f_{rad}=0$.

\rightarrow new engineering solutions surviving >> 20 MW/m² wanted!

- 1. Suppressing ELMs by fast strike point sweeping \rightarrow suppression 3-5x is achievable on EU DEMO
- Liquid Li/Sn divertor survives steady & transients by evaporating ... which will cool plasma
- 1. Why must PFC survive $q_{\perp} >> 10 \text{ MW/m}^2$
- 1. Conceptual experiment of PFC surviving ~60 MW/m²

Water-cooled plasma-facing component survives 60 MW/m²

J. Horacek, T. Radnic, S. Lukes, V. Sedmidubsky, A. Horachek, D. Sestak, M. Bousek, Z. Kutílek, M. Janata, Sedlacek, S. Entler, D. Tskhakaya, V. Weinzettl

16 kW

Conceptual experiment at <u>air plasmatron</u> <u>cooled by water at spe</u>ed 0.8 m/s, zero pressure

heat flux [MW/m²], max 60±10

IR video of graphite bloc (reaching 3800°C in 0.6 s)

COMSOL Multiphysics 3D+time heat conduction.

Asking for a national project for systematic study & closing the water flow

Summary

- ★ Unmitigated ITER ELMs sin(4.5°)·15 MJ/m² melt tungsten
 - Fast strike point sweeping 7 cm, 1.3 kHz, 18 kV → surface temperature suppression by a factor of 3 on EU DEMO. Can be multiplied by RMP & seeding,

Czech liquid metal divertor tokamak program since 2017:

- ★ COMPASS: single LiSn PFC survived
 - o 12-16 MW/m²
 - 15 kJ/m² ELMs
 - major VDE disruption
 - plasma unaffected
 - vapor shielding unreached ← short discharge
 - LiSn doesn't oxidize
 - LiSn evaporates only Li
- ★ **COMPASS-U:** Fiesta+Metis+scalings+HeatLMD+CoreDiv simulations:
 - full toroidal divertor (1000 cm²) with 16 MW/m²: acceptable with cooling max. 4 mm under W surface, better with pure Tin
 - easy inertial cooling: unacceptable after 1 second
 - single LMD (few cm²) at 45° exposed to 160 MW/m² H-mode
 - Li(Sn): acceptably low plasma cooling but 9% core plasma dilution → lower P_{fusion}
 J. Horacek, Physica Scripta 96 (2021) 124013
 - Sn: radiative collapse with conventional cooling
 - acceptable only with backside cooling with 130 $MW/m^2 \rightarrow \frac{1}{4} mm CPS + 2 mm Cu$

J. Horacek, J. *Fusion Eng. Des.* **123** (2017) 646–649

J. Horacek, Scientific Reports (2022) 12:17013

R. Dejarnac, *Nuc. Mat. Energy* **25** (2020) 100801

J. Horacek, *Nuc. Mat. Energy* **25** (2020) 100860

P.Veis, *Nuc. Mat. Energy* **25** (2020) 100809

- ★ ITER expects in detached Q=10:
 - 190 MW/m² from empirical scalings
 - <16 MW/m² thanks to much wider divertor footprint from ITG turbulence in XGC1, accessible likely in ITER only
- ★ Decreased 20x in AUG X-point radiator in 2021
- Attached STEP & SPARC divertors expect 350-480 MW/m²
- ITER divertor survives 10 (forever) 20 MW/m² (shortly)
 - \rightarrow our innovative water PFC concept survived plasma jet 60±10 MW/m² !
 - \rightarrow asking for a national project, your email support appreciated :-).

RESERVES for discussion

IPP INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES Innovative concepts for extreme heat load tokamak divertor

J. Horacek

Horacek, J. Fusion Eng. Des. 123 (2017) 646-649

Inputs:

- JET IR camera in Type-I ELMy H-mode
- Rescaled to DEMO

space: $\lambda_{q}^{JET}/\lambda_{q}^{DEMO} \sim (B_{pol}^{JET}/B_{pol}^{DEMO})^{-1.5} \sim 3$ time: $L_{||}^{DEMO}/L_{||}^{JET}(T^{ped}, J^{ET}/T^{ped}, D^{EMO})^{1/2} \sim 3:1/(1:6)^{\frac{1}{2}}=1.2$ JET 84781 from KL9 IR camera $\log_{10}q_{||} (MW/m^{2})$ 0.03

- Output <u>Surface Temperature Suppression rise</u>, F_{STS} ratio
 - swept strike point
 - normal fixed strike point

Empirical scaling found: used for further system optimization

Predicted & Survived heat loads

Predicted & Survived heat loads

	Hypervar	ootron	Liquid metals have no limit, however, if not partially cooled, its vapor cools the plasma				
	ITER Plasma-facing unit	rd limit Soft lim	Sun surface	Our Conceptual experiment - impact water flow - nucleate boiling - no water pressure :-)			
	Cu int	e C	Survived coo	ling capability			
							
Ċ)		50 W/mm ² = M ³	W/m ² 100	15	O	
	ITER attached		Predicted plasma	divertor heat flux q_{\perp}			
	L-mode Q=0 by scaline ITER detache H-mode	ma gs 1 d 2	 may be strongly decreased by 1. enhanced turbulence observable only for large enough B_{tor}*R₀ in extremely demanding 3D kinetic simulation →λ^{mid}_q increases from ½ mm to ½ cm 2. real-time controlled impurity seeded (X-point) radiation (1st observed in 2021) 				
	Q=10 SOLPS		350 MW/m ² predicted for attac	hed SPARC, 480 MW/m ² for STEP			

Geometry of LMD

Inspired by [Roccella J.Nucl.Mat. 2020]

- 1. until ~2028 make it simple: no pipes
 - a. \rightarrow inertial cooling only
 - b. \rightarrow cannot use pure Li
- 2. keep space for pipes & cold trap later

20 cm³ of LiSn per discharge sputtered & evaporated Without pipes, its enough for 1 only week operation :-(For Tin, it's enough for years

S. Lukes, 2022 JINST 17 C02007

Condensation of Li/Sn on the wall and the cold trap will be simulated by SOLPS + ERO 2.0. Will this work ?

Plasmatron Exp.11: 5 cm off jet nozzle.

Melted only outside the perpendicular flow cooled area

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

Uncertainty: C-coil from a Litz wire conductor

Experimental test of the AC B-conductor

GOLEM Tokamak Wiki - TrainingCourses/FLITE

oroudy

zakázan

Invented AC magnetic conductor to guide kHz B-field through a tube

- a simple <u>axially-cut copper tube</u>:
 - eddy currents suppress kHz B-field penetration
 - cut along its length elliminates poloidal eddy currents

COMSOL at DEMO scale:

• AC B-conductor increases B-field around X-point by **3**, maybe more

HeatLMD of LiSn full toroidal LMD in medium H-mode COMPASS-U

COMPASS INSTITUTE OF PLASMA PHYSICS ASCR

: IPP

3

2.5

0.5

-0.5