

Design process of the DTT divertor cryopumps – An engineering view on particle exhaust modelling

Christian Day, Volker Hauer, Holger Strobel, Christos Tantos, *KIT* Gian Mario Polli, *ENEA* Paolo Innocente, *Consorzio RFX*

DTT Divertor Pumping Section

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

The Divertor Tokamak Test Facility (DTT)

- DTT is a new superconducting tokamak under construction in Italy (ENEA Frascati), organized under the DTT Consortium
- Main scientific goals are to address the key divertor related questions in the EUROfusion roadmap:
 - Investigate energy and particle exhaust challenge in integrated scenario (plasma/divertor/materials)
- EUROfusion with its work package WP DIV is co-funding the provision of <u>the first divertor (PFC and</u> <u>cassettes) and its vacuum pumping</u> <u>system</u>

2D Pre-assessment of pumping port space: Plasma

L. Balbinot et al., Development of DTT SN divertor scenario, Nuclear Mat. Energy (2021)

- Based on a representative plasma scenario established in *preliminary exploration studies with an ITER-like divertor*:
 - Maximum additional power (45 MW)
 - Fully detached, impurity seeding with Ne
 - Target density: $n_{e,sep} = 8.10^{19}/m^3$ (0.7 n_G)
 - Two core fueling flow rates:

 $\Gamma_{\rm D}$ =1.5·10²² D/s, $\Gamma_{\rm Ne}$ =1.2·10²⁰ Ne/s (low rate, 29 Pam³/s D₂)

 $\Gamma_{\rm D}$ =5.3·10²² D/s, $\Gamma_{\rm Ne}$ =1.5·10²¹ Ne/s (high rate, 103 Pam³/s D₂)

- Density and temperature distribution along the inner and outer separatrix legs (calculated with SolEdge2D-EIRENE) coupled as boundary conditions for the neutral gas computational domain (calculated in 2D with the DIVGAS code)
- Pumped flux expressed by dimensionless <u>capture</u> <u>coefficient ξ :</u> $S_{eff} = \xi * A * \bar{v}/4$

2D Pre-assessment of pumping port space: Results

Chr. Tantos et al., DSMC simulations of neutral gas flow in the DTT particle exhaust system, Nuclear Fusion (2022)

Divertor pressure map at high flow rate scenario

Now geometry given – but which pump technology?

- Updated charge based on the preassessment results: Develop a pumping system solely based on the enlarged lower vertical ports (Port # 5).
- Target is: nine (max 10) of these ports.
- DIVGAS allows to unfold the throughput Throughput=pressure x pumping speed.
- At the found pump port inlet pressure of 1 Pa, this translates in a required pumping speed of 11.8 m³/s/port, i.e. a capture coefficient of ξ = 0.23
- A conservative assessment (free molecular flow using MOLFLOW+ code) was done on two candidate divertor pumping technologies: cryogenic pumping vs NEG pumping (nonevaporable getter).

Attached pumping

Deuterium

Sticking factor at outlet [-]	Capture coefficient ξ [-]	Eff. Pumping speed [m³/s]
0.2	0.086	4.17
0.3	0.101	4.91
1.0	0.135	6.52

Sticking factor at outlet [-]	Capture coefficient ξ [-]	Eff. Pumping speed [m³/s]
0.2	0.007	0.35
0.3	0.011	0.52
1.0	0.031	1.49

 $S_{\rm eff} = \xi * A * \bar{\nu}/4$

Insufficient pumping speed \rightarrow in-port solution necessary.

NEG optimisation

Cryo optimisation

In-situ Cryo Downside: needs cryoplant

Example: JT-60SA customized cryopump

- <u>1 Panel 1440x270mm</u>
- capture coefficient = 24.3%
- S_{eff}= 11.8 m³/s
- <u>2 Panel 1440x150</u>
- capture coefficient = 26.0%
- S_{eff}= 12.6 m³∕s
- <u>2 long Panel 2100x150</u>
- capture coefficient = 29,0%
- S_{eff}= 14.2 m³/s

• <u>Capacity:</u>

- ~ 550s total pulse time at full throughput.
- Heat load:
- Fits to ~ JT-60SA sized cryoplant w/o < 4K operation

• Updated 2D plasma scenario (partially detached):

 $\Gamma_{\rm D}$ =8.4·10²² D/s, $\Gamma_{\rm Ne}$ =1·10²¹ Ne/s (160 Pam³/s D₂)

3D assessment

Chr. Tantos et al., 3D DSMC simulations 3D DSMC simulations of neutral gas flow in the DTT particle exhaust, submitted to Nuclear Fusion (2023)

Divertor openness and 3D effects

- Still, from the view of particle exhaust, the outflux is much higher than the pumped flux.
- But this is typical for a fusion divertor, as a comparison with DEMO shows.

- The loss of particles from the divertor is dominated by the backreflection through the neutral entrance (´outflux´).
- If we eliminate both 3 D leakages, we see that, in this regard, the new divertor behaves a bit better than the 2021.

Particle exhaust conclusions

Variation of ξ under 3D conditions showed an improved pumping situation. The requested pumping speed is provided at a lower ξ than was found for the 2D calculations -Now: $\xi = 0.19$

The DTT Single Null divertor can be operated with the reference plasma scenario when being pumped with cryopumps located in 9...10 lower vertical ports, if the toroidal leaks are closed as much as possible.

Cryopump design

Thermomechanical assessment ongoing

Iterative FEM design optimization

Lower max. stress @ 4K supports - improved design

Exemplary results

Load case "Operation"

Assembly	Max. stress [MPa]	Temperature [K]	Stress Limit [MPa]*	Safety factor
Frame-Tray	36	288	260	7,2
80K-Shield	132	175	360	2,7
Frame	91	208	355	3,9
80K-Chevrons	168	95	310	1,8
80K-Baseplate	85	90	310	3,6
4.5K Panels	149	53	350	2,3
Fixations (Port)	142	318	250	1,8

Load case "Regeneration"

Assembly	Max. stress [MPa]	Temperature [K]	Stress Limit [MPa]*	Safety factor
Frame-Tray	29	290	260	9,0
80K-Shield	108	<mark>1</mark> 80	290	2,7
Frame	88	210	355	4,0
80K-Chevrons	134	114	305	2,3
80K-Baseplate	77	110	305	4,0
4.5K Panels	64	100	310	4,8
Fixations (Port)	105	310	250	2,4

Heat loads on one cryopump unit

Heat loads	Value
Radiation to the 80 K system	356 W
Radiation to the 4 K system	1.2 W
Gas cooling and adsorption	5.6 W

Load case "S-Baking"

Assembly	Max. stress [MPa]	Temperature [K]	Stress Limit [MPa]*	Safety factor
Frame-Support	30			6,0
80K-Shield	29			6,2
Frame	154			1,2
80K-Chevrons	30	438 (PORT)	180	6,0
80K-Baseplate	15			12,0
4.5K Panels	8			22,0
Fixations (Port)	24			7,5

* 1.0% Yield stress is allowed for austenitic stainless steels according to pressure vessel standard EN13445-3 In cases of temperatures below 180K no verified data for 1.0% limit are available - 0.2% values were used.

Collisional modelling of the flow in the pump duct

- With a detailed CAD model of the cryopump being available, one can extend the 3D simulations by integrating the complete port with pump.
- The Knudsen number in the pump duct is found to be in transitional flow (Kn~0.05 at the entrance).
- This flow regime will further help pumping, compared to the conservative collision-free case.
- It will also be calculated how (sorbed amount over time) the pumping surface gets saturated by incoming particles, as a function of the port height.
- The model is under work.

Red: Higher collisionality regime Green: Lower collisionality regime

Other cryopumps with similar elements

- Hydroformed components for pumping surfaces and thermal shields in different channel designs
- ~ 11 m² coated area (both sides coated)
- Supplied by GHe at 4K and 80 K, respectively
- ~ 70 m³/s pumping speed

- 3 identical panels in a row
- ~ 0.5 m² coated area (both sides coated)
- Supplied by LHe at 4K
- Actively heatable by attached heaters
- Operated under tritium
- 6.5 m³/s pumping speed

The MANITU and JT-60SA cryopumps

Max-Planck-Institu
für Plasmanhysik

- ~ 12 m² coated area (both sides coated)
- Supplied by LHe at 4K and LN at 80 K
- Equipped with electric heaters
 - ~ 350 m³/s pumping speed
- Same technology is being used for the AUG upper divertor upgrade.

~ 0.4 m² coated area (both sides coated)

- Supplied by 3.8 K He
- Equipped with electric heaters
- ~ 12 m³/s pumping speed
- 9 identical of such cryopumps

Summary

- The performance requirements of the DTT divertor pumping system have been extracted in a self-consistent way from the chosen reference plasma scenario.
- It was shown that these requirements can be fulfilled if the foreseen duct crosssection is enlarged.
- Recommendations were given for how to improve the divertor in terms of 3D particle exhaust; the feature with the strongest influence was the closure of the toroidal gaps.
- A high-performance pump system is then necessary, for which NEG pump technology was compared against cryopump technology. It was decided to go for a charcoal coated cryosorption pump.
- The design of the cryopump features design elements which are known from other cryopumps for fusion, which is expected to reduce manufacturing risk.
- Once the mechanical load assessment is over (mid 2024), the design can be finalized and the technical spec for manufacturing be elaborated (end 2024).

This work was performed within the 7h cycle of MARCONI-FUSION HPC (project TOK-KIT) and also partially on the HoreKa supercomputer (project ngdsim) funded by the Ministry of Science, Research and the Arts 505 Baden-Württemberg and by the Federal Ministry of Education and Research.